题目内容
17.若函数f(x)=lnx的图象与直线$y=\frac{1}{2}x+a$相切,则a=( )| A. | 2ln2 | B. | ln2+1 | C. | ln2 | D. | ln2-1 |
分析 设二曲线的切点为P(x0,y0),由y′=$\frac{1}{{x}_{0}}$=$\frac{1}{2}$,可求得x0,从而可得y0,代入直线y=$\frac{1}{2}$x+a可求得a的值.
解答 解:设二曲线的切点为P(x0,y0),由y′=$\frac{1}{{x}_{0}}$=$\frac{1}{2}$,得:x0=2,
∴y0=lnx0=ln2,
∴P(2,ln2)
又P(2,ln2)在直线y=$\frac{1}{2}$x+a上,
∴1+a=ln2,
∴a=ln2-1.
故选:D.
点评 本题考查利用导数研究曲线上某点切线方程,求得切点坐标是关键,属于中档题.
练习册系列答案
相关题目
8.某工厂为了对新研发的一种产品进行合理定价,将该定价按事先拟定的价格进行试销,得到如下数据:
(1)求回归直线方程$\hat y=bx+a$;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?
附:$b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},a=\overline y-b\overline x$.
| 单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
| 销量y(元) | 90 | 84 | 83 | 80 | 75 | 68 |
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?
附:$b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},a=\overline y-b\overline x$.
2.已知数列{an}是等差数列,a2=3,a6=7,则a11的值为( )
| A. | 11 | B. | 12 | C. | 13 | D. | 10 |