题目内容
15.已知向量$\overrightarrow a=(2cosθ,2sinθ),\overrightarrow b=(0,-2)$,$θ∈(\frac{π}{2},π)$,则向量夹角为( )| A. | $\frac{3π}{2}-θ$ | B. | $θ-\frac{π}{2}$ | C. | $\frac{π}{2}+θ$ | D. | θ |
分析 根据向量夹角的定义,结合三角函数的诱导公式进行化简即可.
解答 解:cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{-4sinθ}{2×2}$=-sinθ=cos($\frac{π}{2}$+θ)=cos(-$\frac{π}{2}$-θ)=cos(2π-$\frac{π}{2}$-θ)=cos($\frac{3π}{2}-θ$)
∵θ∈($\frac{π}{2}$,π),∴$\frac{3π}{2}-θ$∈($\frac{π}{2}$,π),
∴向量夹角为$\frac{3π}{2}-θ$,
故选:A
点评 本题主要考查向量夹角的计算,根据向量数量积的定义结合向量夹角的范围是解决本题的关键.
练习册系列答案
相关题目
3.若命题p:已知0<a<1,?x<0,ax>1,则¬p为( )
| A. | 已知a>1,?x>0,ax≤1 | B. | $已知0<a<1,?{x_0}<0,{a^{x_0}}≤1$ | ||
| C. | $已知0<a<1,?{x_0}≥0,{a^{x_0}}≤1$ | D. | 已知a>1,?x>0,ax≤1 |
10.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=2,$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=( )
| A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 4 | D. | 12 |
20.已知直线l经过抛物线y2=4x的焦点F,且与抛物线交于A,B两点(点A在第一象限)若$\overrightarrow{BA}=4\overrightarrow{BF}$,则△AOB的面积为( )
| A. | $\frac{8}{3}\sqrt{3}$ | B. | $\frac{4}{3}\sqrt{3}$ | C. | $\frac{8}{3}\sqrt{2}$ | D. | $\frac{4}{3}\sqrt{2}$ |
4.已知△ABC中,内角A,B,C所对的边分别为a,b,c,若$\frac{b}{c}$=$\frac{cosA}{1+cosC}$,则sin(2A+$\frac{π}{6}$)的取值范围是( )
| A. | (-$\frac{1}{2}$,$\frac{1}{2}$) | B. | (-$\frac{1}{2}$,1] | C. | ($\frac{1}{2}$,1] | D. | [-1,$\frac{1}{2}$) |
5.设函数f(x)=Asin(ωx+φ)(A>0,ω>0),若f($\frac{π}{2}$)=f($\frac{2π}{3}$)=-f($\frac{π}{6}$),且f(x)在区间[$\frac{π}{6}$,$\frac{π}{2}$]上单调,则f(x)的最小正周期是( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | π |