题目内容
14.如图将边长为1的正六边形ABCDEF绕着直线l旋转180°,则旋转所形成的几何体的表面积为2$\sqrt{3}π$分析 由题意,所得几何体的表面积为一个圆柱和两个圆锥的侧面积的和,即可得出结论.
解答 解:由题意,所得几何体的表面积为一个圆柱和两个圆锥的侧面积的和,所以S=$2π×\frac{\sqrt{3}}{2}×1$+2×$\frac{1}{2}×2π×\frac{\sqrt{3}}{2}×1$=2$\sqrt{3}π$.
故答案为:2$\sqrt{3}π$.
点评 本题考查侧面积的计算,考查学生的计算能力,确定由题意,所得几何体的表面积为一个圆柱和两个圆锥的侧面积的和是关键.
练习册系列答案
相关题目
4.椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是( )
| A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{6\sqrt{5}}{5}$ | C. | $\frac{8\sqrt{5}}{5}$ | D. | $\frac{4\sqrt{5}}{5}$ |
5.
已知抛物线x2=2py和$\frac{{x}^{2}}{2}$-y2=1的公切线PQ(P是PQ与抛物线的切点,未必是PQ与双曲线的切点)与抛物线的准线交于Q,F(0,$\frac{P}{2}$),若$\sqrt{2}$|PQ|=$\sqrt{3}$|PF|,则抛物线的方程是( )
| A. | x2=4y | B. | x2=2$\sqrt{3}$y | C. | x2=6y | D. | x2=2$\sqrt{2}$y |
9.高三学生小李计划在2017年高考结束后,和其他小伙伴一块儿进行旅游,有3个自然风光景点A,B,C和3个人文历史景点a,b,c可供选择,由于时间和距离原因,只能从中任取4个景点进行参观,其中景点A不能第一个参观,且最后参观的是人文历史景点,则不同的旅游顺序有( )
| A. | 54种 | B. | 72种 | C. | 120种 | D. | 144种 |
3.
某市为了了解全民健身运动开展的效果,选择甲、乙两个相似的小区作对比,一年前在甲小区利用体育彩票基金建设了健身广场,一年后分别在两小区采用简单随机抽样的方法抽取20人作为样本,进行身体综合素质测试,测试得分分数的茎叶图(其中十位为茎,个们为叶)如图:
(1)求甲小区和乙小区的中位数;
(2)身体综合素质测试成绩在60分以上(含60)的人称为“身体综合素质良好”,否则称为“身体综合素质一般”.以样本中的频率作为概率,两小区人口都按1000人计算,填写下列2×2列联表,
并判断是否有97.5%把握认为“身体综合素质良好”与“小区是否建设健身广场”有关?
(附:k=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)
(1)求甲小区和乙小区的中位数;
(2)身体综合素质测试成绩在60分以上(含60)的人称为“身体综合素质良好”,否则称为“身体综合素质一般”.以样本中的频率作为概率,两小区人口都按1000人计算,填写下列2×2列联表,
| 甲小区(有健康广场) | 乙小区(无健康广场) | 合计 | |
| 身体综合素质良好 | 350 | 300 | 650 |
| 身体综合素质一般 | 650 | 700 | 1350 |
| 合计 | 1000 | 1000 | 2000 |
| P(K2>k) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
| k0 | 1.706 | 3.841 | 5.024 | 6.635 | 7.879 |
4.已知函数f(x)=x3+1,g(x)=2(log2x)2-2log2x+t-4,若函数F(x)=f(g(x))-1在区间[1,2$\sqrt{2}$]上恰有两个不同的零点,则实数t的取值范围( )
| A. | [$\frac{5}{2}$,4] | B. | [$\frac{5}{2}$,$\frac{9}{2}$) | C. | [4,$\frac{9}{2}$) | D. | [4,$\frac{9}{2}$] |