ÌâÄ¿ÄÚÈÝ
3£®¸ø³öÏÂÁнáÂÛ£º¢ÙÉÈÐεÄÔ²ÐĽÇΪ120¡ã£¬°ë¾¶Îª2£¬ÔòÉÈÐεĻ¡³¤ÊÇ$\frac{4¦Ð}{3}$£»
¢ÚijСÀñÌÃÓÐ25ÅÅ×ùλ£¬Ã¿ÅÅ20¸ö£¬Ò»´ÎÐÄÀíѧ½²×ù£¬ÀñÌÃÖÐ×øÂúÁËѧÉú£¬»áºóΪÁËÁ˽âÓйØÇé¿ö£¬ÁôÏÂ×ùλºÅÊÇ15µÄËùÓÐ25ÃûѧÉú½øÐвâÊÔ£¬ÕâÀïÔËÓõÄÊÇϵͳ³éÑù·½·¨£»
¢ÛÒ»¸öÈË´ò°ÐʱÁ¬ÐøÉä»÷Á½´Î£¬Ôòʼþ¡°ÖÁÉÙÓÐÒ»´ÎÖаС±Óëʼþ¡°Á½´Î¶¼²»ÖаС±»¥Îª¶ÔÁ¢Ê¼þ£»
¢ÜÈô0£¼x£¼$\frac{¦Ð}{2}$£¬Ôòtanx£¾x£¾sinx£»
¢ÝÈôÊý¾Ýx1£¬x2£¬¡£¬xnµÄ·½²îΪ8£¬Êý¾Ý2x1+1£¬2x2+1£¬¡£¬2xn+1µÄ·½²îΪ16£®
ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅΪ¢Ù¢Ú¢Û¢Ü£® £¨°ÑÄãÈÏΪÕýÈ·½áÂÛµÄÐòºÅ¶¼ÌîÉÏ£©
·ÖÎö ¢Ù£¬ÉÈÐεÄÔ²ÐĽÇΪ120¡ã£¬°ë¾¶Îª2£¬ÔòÉÈÐεĻ¡³¤l=¦Ár=$\frac{4¦Ð}{3}$£»
¢Ú£¬¸ù¾Ýϵͳ³éÑù·½·¨µÄ¶¨Òå¢ÚÕýÈ·£»
¢Û£¬Ö±½Ó¸ù¾Ý¶ÔÁ¢Ê¼þµÄ¶¨Ò壬¿ÉµÃʼþ¡°ÖÁÉÙÓÐÒ»´ÎÖаС±µÄ¶ÔÁ¢Ê¼þ£¬´Ó¶øµÃ³ö½áÂÛ£»
¢Ü£¬µ±0£¼x£¼$\frac{¦Ð}{2}$ʱ£¬Áîf£¨x£©=x-sinx£¬g£¨x£©=tanx-x£¬¸ù¾Ýµ¥µ÷ÐÔ¸øÓèÅж¨£®
¢Ý£¬¸ù¾ÝÊý¾Ý2x1+1£¬2x2+1£¬¡£¬2xn+1µÄ·½²îÊÇx1£¬x2£¬x3£¬¡£¬xnµÄ·½²îµÄ22±¶£®
½â´ð ½â£º¶ÔÓÚ¢Ù£¬ÉÈÐεÄÔ²ÐĽÇΪ120¡ã£¬°ë¾¶Îª2£¬ÔòÉÈÐεĻ¡³¤l=¦Ár=$\frac{4¦Ð}{3}$£¬¹Ê¢ÙÕýÈ·£»
¶ÔÓÚ¢Ú£¬¸ù¾Ýϵͳ³éÑù·½·¨µÄ¶¨Òå¢ÚÕýÈ·£»
¶ÔÓÚ¢Û£¬Ö±½Ó¸ù¾Ý¶ÔÁ¢Ê¼þµÄ¶¨Ò壬¿ÉµÃʼþ¡°ÖÁÉÙÓÐÒ»´ÎÖаС±µÄ¶ÔÁ¢Ê¼þ£¬´Ó¶øµÃ³ö¢ÛÕýÈ·£»
¶ÔÓڢܣ¬µ±0£¼x£¼$\frac{¦Ð}{2}$ʱ£¬Áîf£¨x£©=x-sinx£¬g£¨x£©=tanx-x£¬Ôòf¡ä£¨x£©=1-cosx£¾0£¬g¡ä£¨x£©=$\frac{1}{co{s}^{2}x}$-1£¾0£¬
¹Êf£¨x£©ºÍg£¨x£©ÔÚ£¨0£¬$\frac{¦Ð}{2}$£©Éϵ¥µ÷µÝÔö£¬¹Êf£¨x£©£¾f£¨0£©=0£¬g£¨x£©£¾g£¨0£©=0£¬¡àx£¾sinx£¬ÇÒtanx£¾x£¬¡àsinx£¼x£¼tanx£®¹ÊÕýÈ·£»
¶ÔÓڢݣ¬¸ù¾ÝÊý¾Ý2x1+1£¬2x2+1£¬¡£¬2xn+1µÄ·½²îÊÇx1£¬x2£¬x3£¬¡£¬xnµÄ·½²îµÄ22±¶£®¹Ê´í£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û¢Ü
µãÆÀ ±¾Ì⿼²éÁËÃüÌâÕæ¼ÙµÄÅж¨£¬Éæ¼°µ½ÁË´óÁ¿µÄ»ù´¡ÖªÊ¶£¬ÊôÓÚÖеµÌ⣮
| A£® | 2x+y-4=0 | B£® | x-2y+3=0 | C£® | x+y-3=0 | D£® | x-y+1=0 |
| A£® | xºÍ$\stackrel{¡Ä}{y}$¸ºÏà¹Ø£¬yÓë$\stackrel{¡Ä}{z}$¸ºÏà¹Ø | B£® | xºÍ$\stackrel{¡Ä}{y}$ÕýÏà¹Ø£¬yÓë$\stackrel{¡Ä}{z}$ÕýÏà¹Ø | ||
| C£® | xºÍ$\stackrel{¡Ä}{y}$ÕýÏà¹Ø£¬yÓë$\stackrel{¡Ä}{z}$¸ºÏà¹Ø | D£® | xºÍ$\stackrel{¡Ä}{y}$¸ºÏà¹Ø£¬yÓë$\stackrel{¡Ä}{z}$ÕýÏà¹Ø |
| ¹ã¸æ·ÑÓÃx£¨ÍòÔª£© | 2 | 3 | 4 | 5 | 6 |
| ÏúÊ۽γµy£¨Ì¨Êý£© | 3 | 4 | 6 | 10 | 12 |
| A£® | 17 | B£® | 18 | C£® | 19 | D£® | 20 |