题目内容
已知正项数列{an}的前n项和Sn满足:Sn2-(n2+2n-3)Sn-3(n2+2n)=0(n∈N*)
(Ⅰ)求证:Sn=n2+2n;
(Ⅱ)求数列{
}的前n项和Tn.
(Ⅰ)求证:Sn=n2+2n;
(Ⅱ)求数列{
| 1 |
| Sn |
考点:数列的求和,数列递推式
专题:点列、递归数列与数学归纳法
分析:(Ⅰ)根据条件进行因式分解即可证明Sn=n2+2n;
(Ⅱ)求出求数列{
}的通项公式,利用裂项法即可求数列的前n项和Tn.
(Ⅱ)求出求数列{
| 1 |
| Sn |
解答:
解:(Ⅰ)∵Sn2-(n2+2n-3)Sn-3(n2+2n)=0(n∈N*),
∴[Sn-(n2+2n)][(Sn+3)]=0,
∴Sn=n2+2n或Sn=-3,
∵{an}是正项数列,
∴Sn=n2+2n成立.
(Ⅱ)∵Sn=n2+2n
∴
=
=
(
-
)
则数列{
}的前n项和Tn=
(1-
+
-
+
-
+…+
-
+
-
)
=
(1+
-
-
)=
.
∴[Sn-(n2+2n)][(Sn+3)]=0,
∴Sn=n2+2n或Sn=-3,
∵{an}是正项数列,
∴Sn=n2+2n成立.
(Ⅱ)∵Sn=n2+2n
∴
| 1 |
| Sn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
则数列{
| 1 |
| Sn |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3n2+5n |
| 4(n+1)(n+2) |
点评:本题主要考查数列的通项公式的求解以及利用裂项法求数列的前n项和,考查学生的计算能力.
练习册系列答案
相关题目