题目内容

已知空间四点A、B、C、D每两点的连线都相等于a,动点P在线段AB上,动点Q在线段CD上,则点P与Q的最小距离为
 
考点:点、线、面间的距离计算
专题:空间位置关系与距离
分析:由已知中正四面体A-BCD棱长为a,点P在AB上移动,点Q在CD上移动,根据正四面体的几何特征,可得当P为AB的中点,Q为CD的中点时,PQ为异面直线AB与CD的公垂线段,取最小值.
解答: 解:∵正四面体A-BCD棱长为a,
点P在AB上移动,点Q在CD上移动,
故当PQ为异面直线AB与CD的公垂线段时,PQ取最小值
由正四面体的几何特征可得此时,P为AB的中点,Q为CD的中点
在Rt△PBQ中,PB=
1
2
a
,BQ=
3
2
a

则PQ=
BQ2-PB2
=
2
2
a

故答案为:
2
2
a
点评:本题以正四面体为载体,考查棱锥的结构特征,其中根据棱锥的结构特征,判断出当P为AB的中点,Q为CD的中点时,PQ为异面直线AB与CD的公垂线段,取最小值,是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网