题目内容

4.在直角坐标系xOy中,曲线${C_1}:\left\{{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数,t≠0),其中0≤a<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4sinθ,曲线${C_3}=ρ=4\sqrt{3}cosθ$.
(Ⅰ)求C2与C3交点的直角坐标系;
(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.

分析 (Ⅰ)通过极坐标方程与普通方程的转化公式,代入化简即可;
(Ⅱ)通过联立C2与C1、C3与C1可知A的极坐标为(4sinα,α)、B的极坐标为(4$\sqrt{3}$cosθ,α),进而利用辅助角公式,结合三角函数的有界性即得结论.

解答 解:(Ⅰ)因为C2:ρ=4sinθ,
所以ρ2=4ρsinθ,
故C2:x2+y2-4y=0;
因为C3:ρ=4$\sqrt{3}$cosθ,
所以ρ2=4$\sqrt{3}$ρcosθ,
故C3:${x}^{2}+{y}^{2}-4\sqrt{3}x=0$;
联立得交点坐标为(0,0),($\sqrt{3}$,3).
(Ⅱ)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π,
因此得到A的极坐标为(4sinα,α),B的极坐标为(4$\sqrt{3}$cosθ,α).
所以|AB|=|4$\sqrt{3}$cosθ-4sinθ|=|8cos($\frac{π}{6}$+α)|,
当α=$\frac{5π}{6}$时,|AB|取得最大值,最大值为8.

点评 本题考查极坐标与参数方程,考查运算求解能力,涉及辅助角公式,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网