题目内容

正方体ABCD-A1B1C1D1中,E为棱CC1的中点求证:
(1)B1D1⊥AE
(2)AC∥平面B1DE.
考点:直线与平面垂直的性质,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)连结AC,BD,由已知得AC⊥BD,CE⊥BD,从而BD⊥平面ACE,由此能证明B1D1⊥AE.
(2)取AA1的中点F,连接FB1、FD、FE,由已知得四边形B1FDE是平行四边形,由此能证明AC∥平面B1DE.
解答: 证明:(1)连结AC,BD,∵ABCD是正方形,∴AC⊥BD,
∵CE⊥面ABCD,BD?面ABCD,
∴CE⊥BD,又AC∩CE=C,
∴BD⊥平面ACE,又AE?平面ACE,
∴BD⊥AE,
∵BD∥B1D1,∴B1D1⊥AE.
(2)取AA1的中点F,连接FB1、FD、FE,
∵FB1=DE,FD=B1E,
∴四边形B1FDE是平行四边形,即B1、F、D、E四点共面,
∵AC∥FE,且AC不在平面B1FDE内,
∴AC∥平面B1FDE,即AC∥平面B1DE.
点评:本题考查异面直线垂直的证明,考查直线与平面平行的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网