题目内容
5.分析 以D为原点建立空间直角坐标系,设正方体棱长为2.则A1(2,0,2),F)1,0,0),D1(0,0,2),E(0,2,1),则$\overrightarrow{{A}_{1}F}=(-1,0,-2)$,$\overrightarrow{{D}_{1}E}=(0,-2,-1)$,$cos<\overrightarrow{{D}_{1}E},\overrightarrow{{A}_{1}F}>$=$\frac{\overrightarrow{{D}_{1}E}•\overrightarrow{{A}_{1}F}}{|\overrightarrow{{D}_{1}E}||\overrightarrow{{A}_{1}F}|}$=$\frac{2}{\sqrt{5}×\sqrt{5}}=\frac{2}{5}$.
解答
解:如图,以D为原点建立空间直角坐标系,设正方体棱长为2.
则A1(2,0,2),F)1,0,0),D1(0,0,2),E(0,2,1)
则$\overrightarrow{{A}_{1}F}=(-1,0,-2)$,$\overrightarrow{{D}_{1}E}=(0,-2,-1)$,
$cos<\overrightarrow{{D}_{1}E},\overrightarrow{{A}_{1}F}>$=$\frac{\overrightarrow{{D}_{1}E}•\overrightarrow{{A}_{1}F}}{|\overrightarrow{{D}_{1}E}||\overrightarrow{{A}_{1}F}|}$=$\frac{2}{\sqrt{5}×\sqrt{5}}=\frac{2}{5}$,
∴异面直线D1E和A1F所成角的余弦值等于$\frac{2}{5}$,
故答案为:$\frac{2}{5}$.
点评 本题考查了向量法求异面直线夹角,属于中档题.
| A. | $\frac{7}{27}$ | B. | $\frac{2}{9}$ | C. | $\frac{2}{27}$ | D. | $\frac{1}{3}$ |
| A. | 命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1” | |
| B. | 命题“若α>β,则sinα>sinβ”的逆否命题为真命题 | |
| C. | 命题“?x∈R,使得x2+x+1<0”的否定是“?x∈R,都有x2+x+1>0” | |
| D. | “x2+x-2>0”的一个充分不必要条件是“x>1” |
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |