题目内容
15.分析 由已知得到几何体是两个同底的圆锥的组合体,利用图中数据计算体积.
解答
解:由已知得到几何体是底面直径为4,高为3 的两个圆锥 的组合体,所以体积为$\frac{1}{3}×π×{2}^{2}×3×2=8π$;
故答案为:8π.
点评 本题考查了由几何体的三视图求几何体的体积;关键是正确还原几何体.
练习册系列答案
相关题目
12.某高校大一新生的五名同学打算参加学校组织的“小草文学社”、“街舞俱乐部”、“足球之家”、“骑行者”四个社团.若毎个社团至少一名同学参加,每名同学至少参加一个社团且只能参加一个社团,其中同学甲不参加“街舞俱乐部”,则这五名同学不同的参加方法的种数为( )
| A. | 160 | B. | 180 | C. | 200 | D. | 220 |
6.有4个不同的球,四个不同的盒子,把球全部放入盒内,恰有两个盒不放球,共有( )种放法.
| A. | 114 | B. | 96 | C. | 84 | D. | 48 |
3.
已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得出这个几何体的内切球半径是( )
| A. | $\frac{4}{3}$ | B. | $\frac{4}{9}$ | C. | $\sqrt{6}-2$ | D. | $3\sqrt{6}-6$ |
10.已知f(x)是定义在R上的函数,且满足①f(4)=0;②曲线y=f(x+1)关于点(-1,0)对称;③当x∈(-4,0)时f(x)=log2($\frac{x}{{e}^{|x|}}$+ex-m+1),若y=f(x)在x∈[-4,4]上有5个零点,则实数m的取值范围为( )
| A. | [-3e-4,1) | B. | [-3e-4,1)∪{-e-2} | C. | [0,1)∪{-e-2} | D. | [0,1) |
20.已知数列{an}的前n项和是Sn,则下列四个命题中,错误的是( )
| A. | 若数列{an}是公差为d的等差数列,则数列{$\frac{{S}_{n}}{n}$}的公差为$\frac{d}{2}$的等差数列 | |
| B. | 若数列{$\frac{{S}_{n}}{n}$}是公差为d的等差数列,则数列{an}是公差为2d的等差数列 | |
| C. | 若数列{an}是等差数列,则数列的奇数项,偶数项分别构成等差数列 | |
| D. | 若数列{an}的奇数项,偶数项分别构成公差相等的等差数列,则{an}是等差数列 |
4.已知$α∈(0,\frac{π}{2})$,且$2cos2α=cos(α-\frac{π}{4})$,则sin2α的值为( )
| A. | $\frac{1}{8}$ | B. | $-\frac{1}{8}$ | C. | $-\frac{7}{8}$ | D. | $\frac{7}{8}$ |
5.已知椭圆D:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴端点与焦点分别为双曲线E的焦点与实轴端点,椭圆D与双曲线E在第一象限的交点在直线y=2x上,则椭圆D的离心率为( )
| A. | $\sqrt{2}$-1 | B. | $\sqrt{3}$-$\sqrt{2}$ | C. | $\frac{\sqrt{5}-1}{2}$ | D. | $\frac{3-2\sqrt{2}}{2}$ |