题目内容

如图,半径是3
3
的⊙O中,AB是直径,MN是过点A的⊙O的切线,AC,BD相交于点P,且∠DAN=30°,CP=2,PA=9,又PD>PB,则线段PD的长为
 
考点:与圆有关的比例线段
专题:推理和证明
分析:由已知得∠ABD=∠DAN=30°,∠ADB=90°,AB=6
3
,AD=3
3
,BD=9,由相交弦定理,得PA×PC=PD×PB,由此能求出结果.
解答: 解:∵半径是3
3
的⊙O中,AB是直径,MN是过点A的⊙O的切线,
AC,BD相交于点P,且∠DAN=30°,CP=2,PA=9,
∴∠ABD=∠DAN=30°,∠ADB=90°,
∴AB=6
3
,AD=3
3
,BD=9,
由相交弦定理,得PA×PC=PD×PB,
设PD=x,则PB=9-x,∴9×2=x(9-x),
解得x=3或x=6,
∴PD=6,PB=3或PD=3,PB=6(舍),
故PD=6.
故答案为:6.
点评:本题考查与圆有关的线段长的求法,是中档题,解题时要认真审题,注意弦切角定理和相交弦定理的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网