题目内容

8.在△ABC中,角A、B、C的对边分别为a,b,c,且a+b=5,c=$\sqrt{7}$,4sin2C-8sin2$\frac{C}{2}$=1.
(Ⅰ)求角C的大小;
(Ⅱ)求△ABC的面积.

分析 (1)利用同角三角函数基本关系式和倍角公式化简已知可得4cos2C-4cosC+1=0,解得cosC=$\frac{1}{2}$,结合范围C∈(0,π),即可解得C的值.
(2)由余弦定理可得:7=a2+b2-ab=(a+b)2-3ab,代入a+b=5,可解得ab=6,利用三角形面积公式即可得解.

解答 解:(1)∵4sin2C-8sin2$\frac{C}{2}$=1.
∴4(1-cos2C)-8($\frac{1-cosC}{2}$)=1,整理可得:4cos2C-4cosC+1=0,
∴解得:cosC=$\frac{1}{2}$,又C∈(0,π),可得:C=$\frac{π}{3}$.
(2)∵C=$\frac{π}{3}$,c=$\sqrt{7}$,
∴由余弦定理可得:7=a2+b2-ab=(a+b)2-3ab,
∵a+b=5,可得:7=25-3ab,解得ab=6,
∴${S}_{△ABC}=\frac{1}{2}absinC$=$\frac{1}{2}×6×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$.

点评 本题主要考查了同角三角函数基本关系式和倍角公式,余弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网