题目内容

16.已知向量$\overrightarrow a$=(2,m),$\overrightarrow b$=(1,1),若$\overrightarrow a$•$\overrightarrow b$=|${\overrightarrow a$-$\overrightarrow b}$|,则实数m=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

分析 由已知向量的坐标求出$\overrightarrow a$•$\overrightarrow b$,|${\overrightarrow a$-$\overrightarrow b}$|,进一步得到关于m的方程求解.

解答 解:由$\overrightarrow a$=(2,m),$\overrightarrow b$=(1,1),得$\overrightarrow{a}-\overrightarrow{b}=(1,m-1)$,
$\overrightarrow{a}•\overrightarrow{b}=2+m$,$|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{1+(m-1)^{2}}$,
∵$\overrightarrow a$•$\overrightarrow b$=|${\overrightarrow a$-$\overrightarrow b}$|,∴$2+m=\sqrt{1+(m-1)^{2}}$,解得:$m=-\frac{1}{3}$.
故选:D.

点评 本题考查平面向量的数量积运算,考查向量模的求法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网