题目内容

14.已知集合A={x|x2-3x-4≤0},B={x|x2-2mx+m2-9≤0},C={y|y=2x+b,x∈R}
(1)若A∩B=[0,4],求实数m的值;
(2)若A∩C=∅,求实数b的取值范围;
(3)若A∪B=B,求实数m的取值范围.

分析 (1)求出A中不等式的解集确定出A,求出B中不等式解集表示出B,由A与B的交集确定出m的范围即可;
(2)由A与C的交集为空集,确定出b的范围即可;
(3)由A与B的并集为B,得到A为B的子集,确定出m的范围即可.

解答 解:(1)由A中不等式变形得:(x-4)(x+1)≤0,
解得:-1≤x≤4,即A=[-1,4];
由B中不等式变形得:(x-m+3)(x-m-3)≤0,
解得:m-3≤x≤m+3,即B=[m-3,m+3],
∵A∩B=[0,4],
∴$\left\{\begin{array}{l}{m-3=0}\\{m+3≥4}\end{array}\right.$,
解得:m=3;
(2)∵由C中y=2x+b>b,x∈R,得到C=(b,+∞),且A∩C=∅,A=[-1,4],
∴实数b的范围为b≥4;
(3)∵A∪B=B,
∴A⊆B,
∴$\left\{\begin{array}{l}{m-3≤-1}\\{4≤m+3}\end{array}\right.$,
解得:1≤m≤2.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网