题目内容

20.对于锐角α,若$tanα=\frac{3}{4}$,则cos2α+2sin2α=(  )
A.$\frac{16}{25}$B.$\frac{48}{25}$C.1D.$\frac{64}{25}$

分析 利用同角三角函数的基本关系,二倍角公式,求得所给式子的值.

解答 解:∵锐角α,$tanα=\frac{3}{4}$,则cos2α+2sin2α=$\frac{{cos}^{2}α+4sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{1+4tanα}{{tan}^{2}α+1}$=$\frac{1+3}{\frac{9}{16}+1}$=$\frac{64}{25}$,
故选:D.

点评 本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网