题目内容

10.在(1+x+x2n=${D}_{n}^{0}$$+{D}_{n}^{1}$x$+{D}_{n}^{2}$x2+…$+{D}_{n}^{r}$xr+…$+{D}_{n}^{2n-1}$x2n-1$+{D}_{n}^{2n}$x2n的展开式中,把D${\;}_{n}^{0}$,D${\;}_{n}^{1}$,D${\;}_{n}^{2}$…,D${\;}_{n}^{r}$…,D${\;}_{n}^{2n}$叫做三项式系数
(1)求D${\;}_{4}^{0}$$+{D}_{4}^{2}$$+{D}_{4}^{4}$$+{D}_{4}^{6}$$+{D}_{4}^{8}$的值
(2)根据二项式定理,将等式(1+x)2n=(1+x)n(x+1)n的两边分别展开可得,左右两边xn的系数相等,即C${\;}_{2n}^{n}$=(C${\;}_{n}^{0}$)2+(C${\;}_{n}^{1}$)2+(C${\;}_{n}^{2}$)2+…+(C${\;}_{n}^{n}$)2,利用上述思想方法,请计算D${\;}_{2017}^{0}$C${\;}_{2017}^{0}$-D${\;}_{2017}^{1}$C${\;}_{2017}^{1}$+D${\;}_{2017}^{2}$C${\;}_{2017}^{2}$-…+(-1)rD${\;}_{2017}^{r}$C${\;}_{2017}^{r}$+..$+{D}_{2017}^{2016}$C${\;}_{2017}^{2016}$$-{D}_{2017}^{2017}$C${\;}_{2017}^{2017}$的值.

分析 (1)分别根据新定义,令x=1或x=-1,即可求出答案,
(2)根据(1+x+x22017 •(x-1)2017 =(x3-1)2017 的等式两边的x2017项的系数相同,从求得要求式子的值.

解答 解:(1)令x=1,则D40+D41+D42+D43+D44+D45+D46+D47+D48=34=81,
令x=-1,则D40-D41+D42-D43+D44-D45+D46-D47+D48=(1-1+1)4=1,
∴D${\;}_{4}^{0}$$+{D}_{4}^{2}$$+{D}_{4}^{4}$$+{D}_{4}^{6}$$+{D}_{4}^{8}$
=$\frac{1}{2}$[(D40+D41+D42+D43+D44+D45+D46+D47+D48
+(D40-D41+D42-D43+D44-D45+D46-D47+D48)]=$\frac{1}{2}$×(81+1)=41;
(2)∵(1+x+x22017 =D20170+D20171x+D20172x2+…+D2017rxr+…+D20174033x4033+D20174034x4034
(x-1)2017 =C20170x2017-C20171x2016+C20172x2015-C20173x2015+…+-C20172016x+C20172017
其中其中x2017系数为D20170C20170-D20171C20171+D20172C20172-D20173C20173+…+(-1)rD${\;}_{2017}^{r}$C${\;}_{2017}^{r}$+..$+{D}_{2017}^{2016}$C${\;}_{2017}^{2016}$$-{D}_{2017}^{2017}$C${\;}_{2017}^{2017}$
∵(1+x+x22017 •(x-1)2017=(x3-1)2017
 而二项式的(x3-1)2017 的通项公式 Tr+1=C2017r(-1)r(x32017-r
因为2017不是3的倍数,所以(x3-1)2017 的展开式中没有x2017项,由代数式恒成立,
D20170C20170-D20171C20171+D20172C20172-D20173C20173+…+(-1)rD${\;}_{2017}^{r}$C${\;}_{2017}^{r}$+..$+{D}_{2017}^{2016}$C${\;}_{2017}^{2016}$$-{D}_{2017}^{2017}$C${\;}_{2017}^{2017}$=0.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网