题目内容
15.在复平面内复数z=$\frac{1+3i}{1+i}$对应的点在( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 利用复数的运算法则、几何意义即可得出.
解答 解:复数z=$\frac{1+3i}{1+i}$=$\frac{(1+3i)(1-i)}{(1+i)(1-i)}$=$\frac{4+2i}{2}$=2+i在复平面内对应的点的坐标(2,1).
复平面内复数z=$\frac{1+3i}{1+i}$对应的点在第一象限,
故选:A
点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
6.不等式|x-1|+|x-3|<4的解集是( )
| A. | (1,3) | B. | (0,4) | C. | (3,4) | D. | (1,4) |
20.对于锐角α,若$tanα=\frac{3}{4}$,则cos2α+2sin2α=( )
| A. | $\frac{16}{25}$ | B. | $\frac{48}{25}$ | C. | 1 | D. | $\frac{64}{25}$ |
5.复数z=-3+2i的实部为( )
| A. | 2i | B. | 2 | C. | 3 | D. | -3 |