题目内容
已知等比数列{an}中,
=2,a4=8,则a6=( )
| a2+a3 |
| a1+a2 |
| A、31 | B、32 | C、63 | D、64 |
考点:等比数列的性质
专题:等差数列与等比数列
分析:设出等比数列的公比q,由已知列式求得首项和公比,再由等比数列的通项公式得答案.
解答:
解:设等比数列{an}的公比为q,
由
=2,a4=8,得
,解得:
.
∴a6=a1q5=25=32.
故选:B.
由
| a2+a3 |
| a1+a2 |
|
|
∴a6=a1q5=25=32.
故选:B.
点评:本题考查了等比数列的通项公式,考查了等比数列的性质,是基础题.
练习册系列答案
相关题目
已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f(
)|对x∈R恒成立且f(
)<f(π),则下列结论正确的是( )
| π |
| 6 |
| π |
| 2 |
A、f(
| ||||
B、f(
| ||||
| C、f(x)是奇函数 | ||||
D、[0,
|
已知函数f(x)=2x,x∈R,若f(2-a2)>f(a),则实数a的取值范围是( )
| A、(-∞,-1)∪(2,+∞) |
| B、(-1,2) |
| C、(-2,1) |
| D、(-∞,-2)∪(1,+∞) |
已知函数f(x)=x+ln (
+x),g(x)=
,则( )
| x2+1 |
|
| A、f(x)是奇函数,g(x)是奇函数 |
| B、f(x)是偶函数,g(x)是偶函数 |
| C、f(x)是奇函数,g(x)是偶函数 |
| D、f(x)是偶函数,g(x)是奇函数 |
设
=(
,sina),
=(cosa,
)且
∥
,则锐角a为( )
| a |
| 3 |
| 2 |
| b |
| 1 |
| 3 |
| a |
| b |
| A、30° | B、60° |
| C、45° | D、75° |