题目内容
已知函数f(x)对任意的实数x、y都有f(x+y)=f(x)+f(y)-1,且当x>0时,f(x)>1.
(Ⅰ)求证:函数f(x)在R上是增函数;
(Ⅱ)若关于x的不等式f(x2-ax+5a)<f(m)的解集为{x|-3<x<2},求m的值.
(Ⅲ)若f(1)=2,求f(2014)的值.
(Ⅰ)求证:函数f(x)在R上是增函数;
(Ⅱ)若关于x的不等式f(x2-ax+5a)<f(m)的解集为{x|-3<x<2},求m的值.
(Ⅲ)若f(1)=2,求f(2014)的值.
考点:抽象函数及其应用,函数单调性的性质
专题:函数的性质及应用
分析:(Ⅰ)直接利用函数单调性的定义进行判定即可;
(Ⅱ)利用函数单调性去掉“f“,然后根据解集可求出m的值;
(Ⅲ)令x=n,y=1,得f(n+1)-f(n)=1,然后利用累加法可求出所求.
(Ⅱ)利用函数单调性去掉“f“,然后根据解集可求出m的值;
(Ⅲ)令x=n,y=1,得f(n+1)-f(n)=1,然后利用累加法可求出所求.
解答:
(Ⅰ)证明:设x1>x2,则x1-x2>0,从而f(x1-x2)>1,即f(x1-x2)-1>0.
f(x1)=f[x2+(x1-x2)]=f(x2)+f(x1-x2)-1>f(x2),
故f(x)在R上是增函数.
(Ⅱ)解:f(x2-ax+5a)<f(m).由(1)得x2-ax+5a<m,即x2-ax+5a-m<0.
∵不等式f(x2-ax+5a)<f(m)的解集为{x|-3<x<2},
∴方程x2-ax+5a-m=0的两根为-3和2,
于是
,解得
,
(Ⅲ)解:若f(1)=2,在已知等式中令x=n,y=1,得f(n+1)-f(n)=1,
所以累加可得,f(n)=2+(n-1)×1=n+1,故f(2014)=2015.
f(x1)=f[x2+(x1-x2)]=f(x2)+f(x1-x2)-1>f(x2),
故f(x)在R上是增函数.
(Ⅱ)解:f(x2-ax+5a)<f(m).由(1)得x2-ax+5a<m,即x2-ax+5a-m<0.
∵不等式f(x2-ax+5a)<f(m)的解集为{x|-3<x<2},
∴方程x2-ax+5a-m=0的两根为-3和2,
于是
|
|
(Ⅲ)解:若f(1)=2,在已知等式中令x=n,y=1,得f(n+1)-f(n)=1,
所以累加可得,f(n)=2+(n-1)×1=n+1,故f(2014)=2015.
点评:本题主要考查了抽象函数的应用,以及一元二次不等式的求解,同时考查了学生分析问题和解决问题的能力,以及运算求解的能力.
练习册系列答案
相关题目
已知奇函数f(x)在(-∞,0)上单调递增,且f(2)=0,则不等式(x-1)•f(x-1)>0的解集是( )
| A、(-1,3) |
| B、(-∞-1) |
| C、(-∞-1)∪(3,+∞) |
| D、(-1,1)∪(1,3) |