题目内容
17.已知(1-x)n展开式中x2项的系数等于28,则n的值为8.分析 利用二项展开式的通项公式求出通项,令x的指数为2,列出方程求出n.
解答 解:由已知得
Tr+1=Cnr•1n-r•(-x)r=Cnr•(-1)r•xr,
根据题意可知r=2,
∴(-1)2•Cn2=28,
∴Cn2=28,
∴n=8.
故答案为:8.
点评 本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.
练习册系列答案
相关题目
7.
如图,点A为周长为3的圆周上的一定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
8.曲线y=-x3+3x2在点(1,2)处的切线方程为( )
| A. | y=-3x+5 | B. | y=3x-1 | C. | y=3x+5 | D. | y=2x |
2.随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如表.
(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?
(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(d+b)}$,其中:n=a+b+c+d.
| 组号 | 年龄 | 访谈人数 | 愿意使用 |
| 1 | [18,28) | 4 | 4 |
| 2 | [28,38) | 9 | 9 |
| 3 | [38,48) | 16 | 15 |
| 4 | [48,58) | 15 | 12 |
| 5 | [58,68) | 6 | 2 |
(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?
| 年龄不低于48岁的人数 | 年龄低于48岁的人数 | 合计 | |
| 愿意使用的人数 | |||
| 不愿意使用的人数 | |||
| 合计 |
| P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |