题目内容

已知函数f(x)=
2
3x
,定义an=f(n),bn=log3
1
2
an+1).
(1)求数列{bn}的通项公式;
(2)求满足方程
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
25
51
的正整数n的值.
考点:数列的求和,数列与函数的综合
专题:等差数列与等比数列
分析:(1)由an=f(n)=
2
3n
,可得bn=-n-1.
(2)由(1)可得
1
bnbn+1
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2
.因此方程
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
25
51
,化为
1
2
-
1
n+2
=
25
51
,即可解出.
解答: 解:(1)∵an=f(n)=
2
3n

∴bn=log3
1
2
an+1)=log3(
1
2
×
2
3n+1
)
=-n-1.
(2)由(1)可得
1
bnbn+1
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

∴方程
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
25
51
,化为(
1
2
-
1
3
)
+(
1
3
-
1
4
)
+(
1
n+1
-
1
n+2
)
=
1
2
-
1
n+2
=
25
51

解得n=49.
点评:本题考查了对数的运算性质、递推式的应用、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网