题目内容
已知向量
=(an,2n),
=(2n+1,-an+1),n∈N*,
⊥
,且a1=1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{
}的前n项和Sn.
| m |
| n |
| m |
| n |
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{
| 1 |
| bnbn+1 |
考点:数列的求和,平面向量数量积的运算
专题:等差数列与等比数列
分析:(1)由2n+1an=2nan+1,得
=2,由此能求出an=2n-1.
(2)bn=log2an+1=n,由
=
=
-
,由此能求出数列{
}的前n项和Sn.
| an+1 |
| an |
(2)bn=log2an+1=n,由
| 1 |
| bnbn+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| bnbn+1 |
解答:
解:(1)∵m=(an,2n),n=(2n+1,-an+1),n∈N*,m⊥n,
∴2n+1an=2nan+1,
若an=0,an+1=0与a1=1矛盾,
∴
=2,
数列{an}是首项为1,公比为2的等比数列,
∴an=2n-1.
(2)∵bn=log2an+1=n,
∴
=
=
-
,
∴Sn=1-
+
-
+…+
-
=1-
=
.
∴2n+1an=2nan+1,
若an=0,an+1=0与a1=1矛盾,
∴
| an+1 |
| an |
数列{an}是首项为1,公比为2的等比数列,
∴an=2n-1.
(2)∵bn=log2an+1=n,
∴
| 1 |
| bnbn+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
点评:本题考查数列{an}的通项公式,考查数列{
}的前n项和Sn的求法,是中档题,解题时要注意裂项求和法的合理运用.
| 1 |
| bnbn+1 |
练习册系列答案
相关题目
设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(1),f(-3)的大小关系是( )
| A、f(1)>f(-3)>f(-2) |
| B、f(1)>f(-2)>f(-3) |
| C、f(1)<f(-3)<f(-2) |
| D、f(1)<f(-2)<f(-3) |