ÌâÄ¿ÄÚÈÝ

10£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ³¤Ö᳤Ϊ4£¬½¹¾àΪ$2\sqrt{3}$£¬ÒÔAΪԲÐĵÄÔ²£¨x-2£©2+y2=r2£¨r£¾0£©ÓëÍÖÔ²ÏཻÓÚB¡¢CÁ½µã£®
£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨¢ò£©Çó$\overrightarrow{AB}•\overrightarrow{AC}$µÄȡֵ·¶Î§£»
£¨¢ó£©ÉèPÊÇÍÖÔ²C³¤ÒìÓÚB¡¢CµÄÈÎÒ»µã£¬Ö±ÏßPB¡¢PCÓëxÖá·Ö±ð½»ÓÚM¡¢N£¬
ÇóS¡÷POM•S¡÷PONµÄ×î´óÖµ£®

·ÖÎö £¨¢ñ£©ÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ³¤Ö᳤£¬½¹¾à£¬¼°a2=b2+c2£¬ÇóµÃa¡¢b¼´¿É£®
£¨¢ò£©ÉèB£¨x0£¬y0£©ÔòC£¨x0£¬-y0£©£¬¿ÉµÃ$\overrightarrow{AB}•\overrightarrow{AC}={£¨{x_0}-2£©^2}-y_0^2$=${£¨{x_0}-2£©^2}-£¨1-\frac{x_0^2}{4}£©$=$\frac{5}{4}x_0^2-4{x_0}+3=\frac{5}{4}{£¨{x_0}-\frac{8}{5}£©^2}-\frac{1}{5}$£¬ÓÉ-2£¼x0£¼2£¬ÇóµÃ$\overrightarrow{AB}•\overrightarrow{AC}$µÄȡֵ·¶Î§£®
£¨¢ó£©ÉèP£¨x1£¬y1£©£¨y1¡Ù¡Ày0£©£¬µÃµ½Ö±ÏßPB£¬PCµÄ·½³Ì£¬·Ö±ðÁîy=0µÃ${x_M}=\frac{{{x_1}{y_0}-{x_0}{y_1}}}{{{y_0}-{y_1}}}$£¬${x_N}=\frac{{{x_1}{y_0}+{x_0}{y_1}}}{{{y_0}+{y_1}}}$£¬µÃ${S_{¡÷POM}}•{S_{¡÷PON}}=\frac{1}{4}|OM||ON|•y_1^2$=$\frac{1}{4}|{x_M}{x_N}|•y_1^2=y_1^2$£¬
ÒÀ¾Ý-1¡Üy1¡Ü1£¬ÇóµÃS¡÷POM•S¡÷PONÈ¡µÃ×î´óÖµ£®

½â´ð ½â£º£¨¢ñ£©¡ßÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ³¤Ö᳤Ϊ4£¬½¹¾àΪ$2\sqrt{3}$£¬¡à2a=4£¬2c=2$\sqrt{3}$£¬
¡àa=2£¬b2=a2-c2=1
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$£®
£¨¢ò£©ÉèB£¨x0£¬y0£©ÔòC£¨x0£¬-y0£©ÇÒ$\frac{x_0^2}{4}+y_0^2=1$£¬
¡à$\overrightarrow{AB}•\overrightarrow{AC}={£¨{x_0}-2£©^2}-y_0^2$=${£¨{x_0}-2£©^2}-£¨1-\frac{x_0^2}{4}£©$=$\frac{5}{4}x_0^2-4{x_0}+3=\frac{5}{4}{£¨{x_0}-\frac{8}{5}£©^2}-\frac{1}{5}$£¬
ÒòΪ-2£¼x0£¼2£¬ËùÒÔ$\overrightarrow{AB}•\overrightarrow{AC}$µÄȡֵ·¶Î§Îª$[-\frac{1}{5}£¬16£©$£®
£¨¢ó£©ÉèP£¨x1£¬y1£©£¨y1¡Ù¡Ày0£©£¬Ôò$\frac{x_1^2}{4}+y_1^2=1$£¬
Ö±ÏßPB£¬PCµÄ·½³Ì·Ö±ðΪ£º$PB£ºy-{y_1}=\frac{{{y_0}-{y_1}}}{{{x_0}-{x_1}}}£¨x-{x_1}£©$£¬$PC£ºy-{y_1}=\frac{{-{y_0}-{y_1}}}{{{x_0}-{x_1}}}£¨x-{x_1}£©$£¬
·Ö±ðÁîy=0µÃ${x_M}=\frac{{{x_1}{y_0}-{x_0}{y_1}}}{{{y_0}-{y_1}}}$£¬${x_N}=\frac{{{x_1}{y_0}+{x_0}{y_1}}}{{{y_0}+{y_1}}}$£¬
ËùÒÔ${x_M}{x_N}=\frac{x_1^2y_0^2-x_0^2y_1^2}{y_0^2-y_1^2}$=$\frac{£¨4-4y_1^2£©y_0^2-£¨4-4y_0^2£©y_1^2}{y_0^2-y_1^2}$=$\frac{4£¨y_0^2-y_1^2£©}{y_0^2-y_1^2}=4$£¬
ÓÚÊÇ${S_{¡÷POM}}•{S_{¡÷PON}}=\frac{1}{4}|OM||ON|•y_1^2$=$\frac{1}{4}|{x_M}{x_N}|•y_1^2=y_1^2$£¬
ÒòΪ-1¡Üy1¡Ü1£¬ËùÒÔS¡÷POM•S¡÷PONÈ¡µÃ×î´óֵΪ1£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬ÏòÁ¿µÄÊýÁ¿»ý£¬Ãæ»ýµÄ·¶Î§£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø