题目内容

15.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC=2,G,F分别是AD,PB的中点.
(Ⅰ)求证:CD⊥PA;
(Ⅱ)证明:GF⊥平面PBC.

分析 (I)以D为原点建立空间直角坐标系,利用$\overrightarrow{PA}$•$\overrightarrow{DC}$=0,证得PA⊥CD;
(Ⅱ)利用$\overrightarrow{FG}$•$\overrightarrow{CB}$=0,$\overrightarrow{FG}$•$\overrightarrow{PC}$=0,去证GF⊥平面PCB.

解答 证明:(I)以D为原点建立空间直角坐标系则A(2,0,0)B(2,2,0)C(0,2,0)P(0,0,2)F(1,1,1)
 $\overrightarrow{PA}$=(2,0,-2),$\overrightarrow{DC}$=(0,2,0),
∴$\overrightarrow{PA}$•$\overrightarrow{DC}$=0,∴$\overrightarrow{PA}$⊥$\overrightarrow{DC}$,
∴PA⊥CD;
(Ⅱ)设G(1,0,0)则$\overrightarrow{FG}$=(0,-1,-1),$\overrightarrow{CB}$=(2,0,0),$\overrightarrow{PC}$=(0,2,-2)
∴$\overrightarrow{FG}$•$\overrightarrow{CB}$=0,$\overrightarrow{FG}$•$\overrightarrow{PC}$=0,
∴FG⊥CB,FG⊥PC,
∵CB∩PC=C,
∴GF⊥平面PCB.

点评 本题考查线面、面面位置关系的证明.借助于空间向量的运算,降低了思维难度,增加了解题方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网