题目内容
14.已知函数f(x)=2017x+log2017($\sqrt{{x^2}+1}$+x)-2017-x+2,则关于x的不等式f(3x+1)+f(x)>4的解集为( )| A. | $(-∞,-\frac{1}{4})$ | B. | $(-\frac{1}{4},+∞)$ | C. | (0,+∞) | D. | (-∞,0) |
分析 可先设g(x)=2017x+log2017(($\sqrt{{x^2}+1}$+x)-2017-x,根据要求的不等式,可以判断g(x)的奇偶性及其单调性,容易求出g(-x)=-g(x),通过解析式可判断其单调性,从而原不等式可变成,g(3x+1)>g(-x),而根据g(x)的单调性即可得到关于x的一元一次不等式,解该不等式即得原不等式的解集
解答 解:设g(x)=2017x+log2017($\sqrt{{x^2}+1}$+x)-2017-x,
则g(-x)=2017-x+log2017($\sqrt{{x^2}+1}$-x)-2017x=-g(x),
由解析式易知g(x)在R上单调递增;
∴由f(3x+1)+f(x)>4得,g(3x+1)+2+g(x)+2>4;
∴g(3x+1)>-g(x),即为g(3x+1)>g(-x),
得3x+1>-x,
解得x>-$\frac{1}{4}$,
∴原不等式的解集为(-$\frac{1}{4}$,+∞).
故选:B.
点评 本题考查对数的运算,平方差公式,奇函数的判断方法,根据函数导数符号判断函数单调性的方法,函数单调性定义的运用.构造新函数g(x)是解答的关键.
练习册系列答案
相关题目
4.若复数z满足iz=l+3i,其中i为虚数单位,则$\overline z$=( )
| A. | -3+i | B. | -3-i | C. | 3+i | D. | 3-i |
5.通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下2×2列联表:
(Ⅰ)从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深度采访,求这3名学生中至少有2名要挑同桌的概率;
(Ⅱ)根据以上2×2列联表,是否有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关?
下面的临界值表供参考:
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
| 男生 | 女生 | 合计 | |
| 挑同桌 | 30 | 40 | 70 |
| 不挑同桌 | 20 | 10 | 30 |
| 总计 | 50 | 50 | 100 |
(Ⅱ)根据以上2×2列联表,是否有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关?
下面的临界值表供参考:
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
2.已知函数y=1+logmx(m>0且m≠1)的图象恒过点M,若直线$\frac{x}{a}+\frac{y}{b}=1$(a>0,b>0)经过点M,则a+b的最小值为( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
4.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,且|$\overrightarrow{b}$|=|$\overrightarrow{a}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|=1,则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{7}$ |
2.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线方程为y=±$\frac{3}{4}$x,则双曲线C的离心率为( )
| A. | $\frac{{\sqrt{7}}}{2}$ | B. | $\frac{5}{3}$ | C. | $\frac{{\sqrt{7}}}{3}$ | D. | $\frac{5}{4}$ |