题目内容
设全集是R,M={0,1,2},N={1,2,3,4},则(∁RM)∩N=( )
| A、{4} |
| B、{3,4} |
| C、{2,3,4} |
| D、{1,2,3,4} |
考点:交、并、补集的混合运算
专题:集合
分析:利用补集和交集的性质求解.
解答:
解:∵全集是R,M={0,1,2},N={1,2,3,4},
∴(∁RM)∩N={3,4}.
故选:B.
∴(∁RM)∩N={3,4}.
故选:B.
点评:本题考查交集的求法,是基础题,解题时要认真审题.
练习册系列答案
相关题目
若直线ax+by+c=0过二、三、四象限,则成立的是( )
| A、ab>0,ac>0 |
| B、ab>0,ac<0 |
| C、ab<0,ac>0 |
| D、ab<0,ac<0 |
假设一直角三角形的两直角边的长都是区间(0,1)内的随机数,则斜边长小于
的概率为( )
| ||
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
若变量x、y满足约束条件
,则z=2x-y的最小值为( )
|
| A、4 | B、1 | C、0 | D、-1 |
不等式(
) x2-4a<2 3x+a2对一切x都成立,则a的取值范围是( )
| 1 |
| 2 |
A、a<-
| ||||
B、-
| ||||
C、a<-
| ||||
D、-
|
若函数f(x)=2sin(2x+
),则它的图象的一个对称中心为( )
| π |
| 4 |
A、(-
| ||
B、(
| ||
| C、(0,0) | ||
D、(-
|
若θ为三角形一个内角,且对任意实数x,y=x2cosθ-4xsinθ+6均取正值,则cosθ所在区间为( )
A、(
| ||
B、(0,
| ||
C、(-2,
| ||
D、(-1,
|
函数f(x)=
为R的单调函数,则实数a的取值范围是( )
|
| A、(0,+∞) |
| B、[-1,0) |
| C、(-2,0) |
| D、(-∞,-2) |