题目内容
6.命题“若x>2,则x>1”的逆否命题是( )| A. | 若x<2,则x<1 | B. | 若x≤2,则x≤1 | C. | 若x≤1,则x≤2 | D. | 若x<1,则x<2 |
分析 根据逆否命题的定义,结合已知中的原命题,可得答案.
解答 解:命题“若x>2,则x>1”的逆否命题是“若x≤1,则x≤2”,
故选:C
点评 本题考查的知识点是四种命题,难度不大,属于基础题.
练习册系列答案
相关题目
17.函数f(x)=ex与函数g(x)=-2x+3的图象的交点的横坐标所在的大致区间是( )
| A. | (-1,0) | B. | $({0,\frac{1}{2}})$ | C. | $({\frac{1}{2},1})$ | D. | (1,2) |
14.将函数f(x)=$\sqrt{3}$sinxcosx+sin2x的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x轴向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,则y=g(x)的一个递增区间是( )
| A. | $[{-\frac{π}{6},\frac{5π}{6}}]$ | B. | $[{-\frac{π}{2},\frac{π}{2}}]$ | C. | $[{-\frac{π}{12},\frac{4π}{3}}]$ | D. | $[{-\frac{π}{4},0}]$ |
1.甲、乙两人玩一种游戏,游戏规则如下:先将筹码放在如下表的正中间D处,投掷一枚质地均匀的硬币,若正面朝上,筹码向右移动一格;若反面朝上,筹码向左移动一格.
(1)将硬币连续投掷三次,现约定:若筹码停在A或B或C或D处,则甲赢;否则,乙赢.问该约定对乙公平吗?请说明理由.
(2)设甲、乙两人各有100个积分,筹码停在D处,现约定:
①投掷一次硬币,甲付给乙10个积分;乙付给甲的积分数是,按照上述游戏规则筹码所在表中字母A-G下方所对应的数目;
②每次游戏筹码都连续走三步,之后重新回到起始位置D处.
你认为该规定对甲、乙二人哪一个有利,请说明理由.
| A | B | C | D | E | F | G |
| 30 | 5 | 10 | 10 | 5 | 20 | 30 |
(2)设甲、乙两人各有100个积分,筹码停在D处,现约定:
①投掷一次硬币,甲付给乙10个积分;乙付给甲的积分数是,按照上述游戏规则筹码所在表中字母A-G下方所对应的数目;
②每次游戏筹码都连续走三步,之后重新回到起始位置D处.
你认为该规定对甲、乙二人哪一个有利,请说明理由.
11.
如图,在四面体ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b,\overrightarrow{AD}$=$\overrightarrow c$,点M在AB上,且AM=$\frac{2}{3}$AB,点N是CD的中点,则$\overrightarrow{MN}$=( )
| A. | $\frac{1}{2}\overrightarrow a-\frac{2}{3}\overrightarrow b+\frac{1}{2}\overrightarrow c$ | B. | $-\frac{2}{3}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c$ | C. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\frac{1}{2}\overrightarrow c$ | D. | $-\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b-\frac{1}{2}\overrightarrow c$ |
16.
从某工厂生产的P,Q两种型号的玻璃种分别随机抽取8个样品进行检查,对其硬度系数进行统计,统计数据用茎叶图表示(如图所示),则P组数据的众数和Q组数据的中位数分别为( )
| A. | 22和22.5 | B. | 21.5和23 | C. | 22和22 | D. | 21.5和22.5 |