题目内容
1.甲、乙两人玩一种游戏,游戏规则如下:先将筹码放在如下表的正中间D处,投掷一枚质地均匀的硬币,若正面朝上,筹码向右移动一格;若反面朝上,筹码向左移动一格.| A | B | C | D | E | F | G |
| 30 | 5 | 10 | 10 | 5 | 20 | 30 |
(2)设甲、乙两人各有100个积分,筹码停在D处,现约定:
①投掷一次硬币,甲付给乙10个积分;乙付给甲的积分数是,按照上述游戏规则筹码所在表中字母A-G下方所对应的数目;
②每次游戏筹码都连续走三步,之后重新回到起始位置D处.
你认为该规定对甲、乙二人哪一个有利,请说明理由.
分析 (1)利用将硬币连续投掷三次,列举出所有8种情况,筹码停在A或B或C或D处有4种情况,即筹码停在A或B或C或D为$\frac{1}{2}$,从而得到该约定对乙公平.
(2)乙付给甲的积分数可能是20,25,30,45,55,设乙付给甲的积分为X,求出E(X)=$\frac{255}{8}$>30,从而该规定对甲有利.
解答 解:(1)该约定对乙公平.
将硬币连续投掷三次,共有以下8种情况:
D→C→B→A,D→C→B→C,D→C→D→E,D→C→D→C,
D→E→F→G,D→E→F→E,D→E→D→E,D→E→D→C.
筹码停在A或B或C或D处有4种情况,
即筹码停在A或B或C或D为:p=$\frac{4}{8}=\frac{1}{2}$,
∴该约定对乙公平.
(2)该规定对甲有利.
根据(1)中所列的8种情况可得乙付给甲的积分数可能是20,25,30,45,55,
设乙付给甲的积分为X,
P(X=20)=$\frac{1}{8}$,P(X=25)=$\frac{3}{8}$,P(X=30)=$\frac{2}{8}$,
P(X=45)=$\frac{1}{8}$,P(X=55)=$\frac{1}{8}$,
可得分布列为:
| X | 20 | 25 | 30 | 45 | 55 |
| P | $\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{2}{8}$ | $\frac{1}{8}$ | $\frac{1}{8}$ |
∴该规定对甲有利.
点评 本题考查概率的求法及应用,是基础题,解题时要认真审题,注意利用列举法的合理运用.
练习册系列答案
相关题目
16.已知平面区域D=$\left\{{({x,y})\left|\begin{array}{l}\\ 3x+y≥3\\ x-y≤2\\ x+3y≤3\end{array}\right.}\right\}$,z=3x-2y,若命题“?(x0,y0)∈D,z>m”为假命题,则实数m的最小值为( )
| A. | $\frac{3}{4}$ | B. | $\frac{7}{4}$ | C. | $\frac{21}{4}$ | D. | $\frac{25}{4}$ |
6.命题“若x>2,则x>1”的逆否命题是( )
| A. | 若x<2,则x<1 | B. | 若x≤2,则x≤1 | C. | 若x≤1,则x≤2 | D. | 若x<1,则x<2 |
13.已知p:“?x∈[1,2],x2-a≥0”,q:“?x∈R”,使得x2+2ax+2-a=0,那么命题“p∧q”为真命题的充要条件是( )
| A. | a≤-2或a=1 | B. | a≤-2或1≤a≤2 | C. | a≥1 | D. | -2≤a≤1 |