题目内容
5.设函数$f(x)=\frac{x}{2x-1}$,则$f(\frac{1}{4011})+f(\frac{2}{4011})+f(\frac{3}{4011})+…+f(\frac{4010}{4011})$=2005.分析 推导出f(x)+f(1-x)=1,由此能求出$f(\frac{1}{4011})+f(\frac{2}{4011})+f(\frac{3}{4011})+…+f(\frac{4010}{4011})$.
解答 解:∵函数$f(x)=\frac{x}{2x-1}$,
∴f(x)+f(1-x)=$\frac{x}{2x-1}+\frac{1-x}{2(1-x)-1}$=1,
∴$f(\frac{1}{4011})+f(\frac{2}{4011})+f(\frac{3}{4011})+…+f(\frac{4010}{4011})$
=$\frac{1}{2}×$4010×1=2005.
故答案为:2005.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
13.已知函数f(x)=e|x|,则$\int_{-2}^4{f(x)}dx$( )
| A. | e4+e2-2 | B. | e4-e2 | C. | e4-e2+2 | D. | e4-e2-2 |
14.已知函数f(x)=sinx-bcosx(其中b为实数)的图象关于直线x=-$\frac{π}{6}$对称,且?x1,x2∈R,且x1≠x2,f(x1)f(x2)≤4恒成立,则下列结论正确的是( )
| A. | 函数f(x)的图象向左平移$\frac{π}{3}$个单位得到的函数是偶函数 | |
| B. | 不等式f(x1)f(x2)≤4取到等号时|x1-x2|的最小值为2π | |
| C. | 函数f(x)的图象的一个对称中心为($\frac{2}{3}$π,0) | |
| D. | 函数f(x)在区间[$\frac{π}{6}$,π]上单调递增 |
11.设a是实数,且$\frac{2a}{1+i}$+1+i是实数,则a=( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | -1 |
10.下列命题是真命题的为( )
| A. | 若$\frac{1}{x}$=$\frac{1}{y}$,则x=y | B. | 若x2≤4,则x=1 | C. | 若x=y,则$\sqrt{x}$=$\sqrt{y}$ | D. | 若x<y,则 x2<y2 |
17.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1与椭圆$\frac{x^2}{m^2}+\frac{y^2}{b^2}$=1(m>b>0)的离心率之积等于1,则以a,b,m为边长的三角形一定是( )
| A. | 等腰三角形 | B. | 钝角三角形 | C. | 锐角三角形 | D. | 直角三角形 |
14.有编号为D1,D2,…,D10的10个零件,测量其直径(单位:mm),得到下面数据:
其中直径在区间(148,152]内的零件为一等品.
(1)从上述10个零件中,随机抽取2个,求这2个零件均为一等品的概率;
(2)从一等品零件中,随机抽取2个.用ξ表示这2个零件直径之差的绝对值,求随机变量ξ的分布列及数学期望.
其中直径在区间(148,152]内的零件为一等品.
| 编号 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 |
| 直径 | 151 | 148 | 149 | 151 | 149 | 152 | 147 | 146 | 153 | 148 |
(2)从一等品零件中,随机抽取2个.用ξ表示这2个零件直径之差的绝对值,求随机变量ξ的分布列及数学期望.