题目内容

1.设max{m,n}表示m,n中最大值,则关于函数f(x)=max{sinx+cosx,sinx-cosx}的命题中,真命题的个数是(  )
①函数f(x)的周期T=2π
②函数f(x)的值域为$[-1,\sqrt{2}]$
③函数f(x)是偶函数 
④函数f(x)图象与直线x=2y有3个交点.
A.1B.2C.3D.4

分析 在同一坐标系中,作出函数f(x)与直线x=2y的图象,即可得出结论.

解答 解:下图是函数f(x)与直线x=2y在同一坐标系中的图象,由图知①②④正确,
故选C.

点评 本题考查函数的图象与性质,正确作出函数的图象是关键.

练习册系列答案
相关题目
16.上世纪八十年代初,邓小平同志曾指出“在人才的问题上,要特别强调一下,必须打破常规去发现、选拔和培养杰出的人才”.据此,经省教育厅批准,某中学领导审时度势,果断作出于1985年开始施行超常实验班教学试验的决定.一时间,学生兴奋,教师欣喜,家长欢呼,社会热议.该中学实验班一路走来,可谓风光无限,硕果累累,尤其值得一提的是,1990年,全国共招收150名少年大学生,该中学就有19名实验班学生被录取,占全国的十分之一,轰动海内外.设该中学超常实验班学生第x年被录取少年大学生的人数为y.
(1)左下表为该中学连续5年实验班学生被录取少年大学生人数,求y关于x的线性回归方程,并估计第6年该中学超常实验班学生被录取少年大学生人数;
年份序号x12345
录取人数y1011141619
附1:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline y$-$\stackrel{∧}{b}$$\overline{x}$
(2)如表是从该校已经毕业的100名高中生录取少年大学生人数与是否接受超常实验班教育得到2×2列联表,完成上表,并回答:是否有95%以上的把握认为“录取少年大学生人数与是否接受超常实验班教育有关系”.
附2:
接受超常实验班教育未接受超常实验班教育合计
录取少年大学生602080
未录取少年大学生101020
合计7030100
P(k2≥k00.500.400.100.05
k00.4550.7082.7063.841
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网