题目内容

10.如图1,菱形ABCD的边长为12,∠BAD=60°,AC交BD于点O.将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M,N分别是棱BC,AD的中点,且DM=6$\sqrt{2}$.

(Ⅰ)求证:OD⊥平面ABC;
(Ⅱ)求三棱锥M-ABN的体积.

分析 (Ⅰ)由ABCD是菱形,可得AD=DC,OD⊥AC,求解三角形可得OD=6,结合M是BC的中点,求出OM、MD,可得OD2+OM2=MD2,得DO⊥OM,由线面垂直的判定可得OD⊥面ABC;
(Ⅱ)取线段AO的中点E,连接NE.可得NE∥DO.由(Ⅰ)得OD⊥面ABC,可得NE⊥面ABC,求出△ABM的面积,然后利用等积法求得三棱锥M-ABN的体积.

解答 (Ⅰ)证明:∵ABCD是菱形,∴AD=DC,OD⊥AC,
在△ADC中,AD=DC=12,∠ADC=120°,∴OD=6,
又M是BC的中点,∴$OM=\frac{1}{2}AB=6,MD=6\sqrt{2}$,
∵OD2+OM2=MD2,则DO⊥OM,
∵OM,AC?面ABC,OM∩AC=O,
∴OD⊥面ABC;
(Ⅱ)解:取线段AO的中点E,连接NE.
∵N是棱AD的中点,∴NE=$\frac{1}{2}DO$且NE∥DO.
由(Ⅰ)得OD⊥面ABC,∴NE⊥面ABC,
在△ABM中,AB=12,BM=6,∠ABM=120°,
∴${S}_{△ABM}=\frac{1}{2}•AB•BM•sin∠ABM$=$\frac{1}{2}×12×6×\frac{\sqrt{3}}{2}=18\sqrt{3}$.
∴${V_{M-ABN}}=\frac{1}{2}{V_{M-ABD}}=\frac{1}{2}{V_{D-ABM}}=\frac{1}{2}•\frac{1}{3}{S_{△ABM}}•OD=18\sqrt{3}$.

点评 本题考查直线与平面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网