题目内容

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点F(-c,0)(c>0),作圆x2+y2=
a2
4
的切线,切点为E,延长FE交双曲线右支于点P,若
OP
=2
OE
-
OF
,则双曲线的离心率为(  )
A、
10
B、
10
5
C、
10
2
D、
2
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设右焦点为F′,由
OP
=2
OE
-
OF
,可得E是PF的中点,利用O为FF'的中点,可得OE为△PFF'的中位线,从而可求PF′、PF,再由勾股定理得出关于a,c的关系式,最后即可求得离心率.
解答: 解:设右焦点为F′,则
OP
=2
OE
-
OF

OP
+
OF
=2
OE

∴E是PF的中点,
∴PF′=2OE=a,
∴PF=3a,
∵OE⊥PF,
∴PF′⊥PF,
∴(3a)2+a2=4c2
∴e=
c
a
=
10
2

故选:C.
点评:本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,考查抛物线的定义,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网