题目内容

18.已知函数f(x)在R上的导函数是f′(x),并且满足xf′(x)<0,若a=f(0.33),b=f(log2$\sqrt{3}$),c=f(log3$\sqrt{2}$),则(  )
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

分析 0.33=0.027,由对数函数的单调性可知0<0.33<log3$\sqrt{2}$<log2$\sqrt{3}$,再由xf′(x)<0知f(x)在(0,+∞)上是减函数;从而比较大小即可.

解答 解:0.33=0.027,
log2$\sqrt{3}$>log2$\sqrt{2}$=$\frac{1}{2}$;
log3$\sqrt{2}$<log3$\sqrt{3}$=$\frac{1}{2}$;
又∵$\sqrt{3}$<2,
∴$\root{4}{3}$<$\sqrt{2}$,
∴log3$\sqrt{2}$>log3$\root{4}{3}$=$\frac{1}{4}$;
∴0<0.33<log3$\sqrt{2}$<log2$\sqrt{3}$;
∵xf′(x)<0,
∴x∈(0,+∞)时,f′(x)<0;
故f(x)在(0,+∞)上是减函数;
故f(0.33)>f(log3$\sqrt{2}$)>f(log2$\sqrt{3}$),
即a>c>b;
故选:B.

点评 本题考查了导数在判断函数的单调性时的应用及函数的单调性的应用,同时考查了对数的运算性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网