题目内容

7.在四棱锥P-ABCD中,△PAB为正三角形,四边形ABCD为矩形,平面PAB⊥平面ABCD,AB=2AD,M、N分别为PB、PC的中点.
(Ⅰ)求证:MN∥平面PAD;
(Ⅱ)求二面角B-AM-C的大小.

分析 (Ⅰ)MN是△ABC的中位线,可得MN∥BC∥AD,即可证以MN∥平面PAD.
(Ⅱ)过点P作PO垂直于AB,交AB于点O,因为平面PAB⊥平面ABCD,所以PO⊥平面ABCD,如图建立空间直角坐标系设AB=2,则A(-1,0,0),C(1,1,0),M($\frac{1}{2}$,0,$\frac{\sqrt{3}}{2}$),B(1,0,0),N($\frac{1}{2}$,$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),利用向量法求解.

解答 解:(Ⅰ)证明:∵M,N分别是PB,PC中点
∴MN是△ABC的中位线∴MN∥BC∥AD
又∵AD?平面PAD,MN?平面PAD 
所以MN∥平面PAD.…(5分)
(Ⅱ)过点P作PO垂直于AB,交AB于点O,
因为平面PAB⊥平面ABCD,所以PO⊥平面ABCD,
如图建立空间直角坐标系设AB=2,则A(-1,0,0),C(1,1,0),M($\frac{1}{2}$,0,$\frac{\sqrt{3}}{2}$),
B(1,0,0),N($\frac{1}{2}$,$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则$\overrightarrow{AC}=(2,1,0)$,$\overrightarrow{AM}=(\frac{3}{2},0,\frac{\sqrt{3}}{2})$.
设平面CAM法向量为$\overrightarrow{{n}_{1}}=({x}_{1},{y}_{1},{z}_{1})$,由$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{AC}=2{x}_{1}+{y}_{1}=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{AM}=\frac{3}{2}{x}_{1}+\frac{\sqrt{3}}{2}{z}_{1}=0}\end{array}\right.$ 可得$\overrightarrow{{n}_{1}}=(1,-2,-\sqrt{3}$)
平面ABM法向量$\overrightarrow{{n}_{2}}=(0,1,0)$,∴cos<$\overrightarrow{{n}_{1}}$,$\overrightarrow{{n}_{2}}$>=-$\frac{\sqrt{2}}{2}$
 因为二面角B-AM-C是锐二面角,
所以二面角B-AM-C等于$\frac{π}{4}$…(12分)

点评 本题考查了空间线面平行的判定,向量法求二面角,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网