题目内容
已知
+
+
=
,
•
=
•
=
•
=-1.
(1)求|
|;
(2)试判断△ABC的形状,并求其面积.
| OA |
| OB |
| OC |
| 0 |
| OA |
| OB |
| OB |
| OC |
| OC |
| OA |
(1)求|
| OA |
(2)试判断△ABC的形状,并求其面积.
考点:三角形的形状判断,平面向量数量积的运算
专题:解三角形
分析:(1)由题意可得
=-
-
,平方结合已知可得
2+
2=
2+2,由
+
+
=
两边平方可得
2+
2+
2-6=0,两式综合可得
2=4,进而可得|
|=2;
(2)同理可得|
|=|
|=|
|=2,即△ABC为正三角形,易得面积.
| OA |
| OB |
| OC |
| OB |
| OC |
| OA |
| OA |
| OB |
| OC |
| 0 |
| OA |
| OB |
| OC |
| OA |
| OA |
(2)同理可得|
| OB |
| OC |
| OA |
解答:
解:(1)∵
+
+
=
,∴
=-
-
,
平方可得
2=(
+
)2=
2+
2+2
•
=
2+
2-2,
∴
2+
2=
2+2,①
由
+
+
=
两边平方可得
2+
2+
2+2
•
+2
•
+2
•
=0,
∴
2+
2+
2-6=0,②
把①代入②可得
2+
2+2-6=0,即
2=4,∴|
|=2,
(2)同理可得|
|=|
|=|
|=2,即△ABC为正三角形,
∴其面积S=
×2×2×sin60°=
| OA |
| OB |
| OC |
| 0 |
| OA |
| OB |
| OC |
平方可得
| OA |
| OB |
| OC |
| OB |
| OC |
| OB |
| OC |
| OB |
| OC |
∴
| OB |
| OC |
| OA |
由
| OA |
| OB |
| OC |
| 0 |
| OA |
| OB |
| OC |
| OA |
| OB |
| OB |
| OC |
| OC |
| OA |
∴
| OA |
| OB |
| OC |
把①代入②可得
| OA |
| OA |
| OA |
| OA |
(2)同理可得|
| OB |
| OC |
| OA |
∴其面积S=
| 1 |
| 2 |
| 3 |
点评:本题考查三角形形状的判断,涉及向量的数量积的运算,属中档题.
练习册系列答案
相关题目