题目内容

已知
OA
+
OB
+
OC
=
0
OA
OB
=
OB
OC
=
OC
OA
=-1.
(1)求|
OA
|;
(2)试判断△ABC的形状,并求其面积.
考点:三角形的形状判断,平面向量数量积的运算
专题:解三角形
分析:(1)由题意可得
OA
=-
OB
-
OC
,平方结合已知可得
OB
2
+
OC
2
=
OA
2
+2,由
OA
+
OB
+
OC
=
0
两边平方可得
OA
2
+
OB
2
+
OC
2
-6=0,两式综合可得
OA
2
=4,进而可得|
OA
|=2;
(2)同理可得|
OB
|=|
OC
|=|
OA
|=2,即△ABC为正三角形,易得面积.
解答: 解:(1)∵
OA
+
OB
+
OC
=
0
,∴
OA
=-
OB
-
OC

平方可得
OA
2
=(
OB
+
OC
2=
OB
2
+
OC
2
+2
OB
OC
=
OB
2
+
OC
2
-2,
OB
2
+
OC
2
=
OA
2
+2,①
OA
+
OB
+
OC
=
0
两边平方可得
OA
2
+
OB
2
+
OC
2
+2
OA
OB
+2
OB
OC
+2
OC
OA
=0,
OA
2
+
OB
2
+
OC
2
-6=0,②
把①代入②可得
OA
2
+
OA
2
+2-6=0,即
OA
2
=4,∴|
OA
|=2,
(2)同理可得|
OB
|=|
OC
|=|
OA
|=2,即△ABC为正三角形,
∴其面积S=
1
2
×2×2×sin60°=
3
点评:本题考查三角形形状的判断,涉及向量的数量积的运算,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网