题目内容

15.下表是一个有i行j列的表格.已知每行每列都成等差数列,
47a1,3a1,j
712a2,3a2,j
aa3,2a3,3a3,j
ai,1ai,2ai,3ai,j
其中ai,j表示表格中第i行第j列的数,则a4,5=49,ai,j=2ij+i+j.

分析 根据图象和每行、每列都是等差数列,该等差数阵的第一行是首项为4,公差为3的等差数列:a1j=4+3(j-1),第二行是首项为7,公差为5的等差数列:a2j=7+5(j-1),第i行是首项为4+3(i-1),公差为2i+1的等差数列,即可得出.

解答 解:根据图象和每行、每列都是等差数列,该等差数阵的第一行是首项为4,
公差为3的等差数列:a1j=4+3(j-1),
第二行是首项为7,公差为5的等差数列:a2j=7+5(j-1),
第i行是首项为4+3(i-1),公差为2i+1的等差数列,
因此aij=4+3(i-1)+(2i+1)(j-1),
=2ij+i+j=i(2j+1)+j=2ij+i+j.
可得a4,5=2×4×5+4+5=49.
故答案为:49,2ij+i+j.

点评 本题考查了等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网