题目内容
已知{an}是公差为d的等差数列,?n∈N*,an与an+1的等差中项为n.
(1)求a1与d的值;
(2)设bn=2n•an,求数列{bn}的前n项和Sn.
(1)求a1与d的值;
(2)设bn=2n•an,求数列{bn}的前n项和Sn.
考点:数列的求和,等差数列的通项公式
专题:等差数列与等比数列
分析:(1)在等差数列{an}中,由an与an+1的等差中项为n,得an+an+1=2n,代入等差数列的通项公式后由系数相等求得首项和公差;
(2)由(1)求出{an}的通项,代入bn=2n•an,分组后利用错位相减法求和.
(2)由(1)求出{an}的通项,代入bn=2n•an,分组后利用错位相减法求和.
解答:
解:(1)在等差数列{an}中,由an与an+1的等差中项为n,得an+an+1=2n,
即2a1+(2n-1)d=2n,(2a1-d)+2nd=2n,
∴
,解得
.
(2)由(1)知,an=a1+(n-1)d=
+n-1=n-
.
bn=2n•an=(n-
)•2n.
∴Sn=(1-
)•21+(2-
)•22+(3-
)•23+…+(n-
)•2n
=(1•21+2•22+…+n•2n)-
(2+22+…+2n)
=(1•21+2•22+…+n•2n)-
•
=(1•21+2•22+…+n•2n)+2n-1.
令Tn=1•21+2•22+…+n•2n,
则2Tn=1•22+2•23+…+(n-1)•2n+n•2n+1,
两式作差得:-Tn=2+22+…+2n-n•2n+1=
-n•2n+1=(1-n)•2n+1-2.
∴Tn=(n-1)•2n+1+2.
∴Sn=(n-1)•2n+1+2n+1.
即2a1+(2n-1)d=2n,(2a1-d)+2nd=2n,
∴
|
|
(2)由(1)知,an=a1+(n-1)d=
| 1 |
| 2 |
| 1 |
| 2 |
bn=2n•an=(n-
| 1 |
| 2 |
∴Sn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=(1•21+2•22+…+n•2n)-
| 1 |
| 2 |
=(1•21+2•22+…+n•2n)-
| 1 |
| 2 |
| 2(1-2n) |
| 1-2 |
=(1•21+2•22+…+n•2n)+2n-1.
令Tn=1•21+2•22+…+n•2n,
则2Tn=1•22+2•23+…+(n-1)•2n+n•2n+1,
两式作差得:-Tn=2+22+…+2n-n•2n+1=
| 2(1-2n) |
| 1-2 |
∴Tn=(n-1)•2n+1+2.
∴Sn=(n-1)•2n+1+2n+1.
点评:本题考查了等差数列的通项公式,考查了数列的分组求和,训练了错位相减法求数列的和,是中档题.
练习册系列答案
相关题目
若变量x、y满足约束条件
,则z=x+y的取值范围是( )
|
| A、[4,7] | ||
| B、[-1,7] | ||
C、[
| ||
| D、[1,7] |