题目内容
化简:sin2x sin2y+cos2xcos2y-
cos2xcos2y= .
| 1 |
| 2 |
考点:三角函数的化简求值
专题:三角函数的求值
分析:直接利用二倍角的余弦公式降幂,然后通分化简.
解答:
解:sin2x sin2y+cos2xcos2y-
cos2xcos2y
=
•
+
•
-
cos2xcos2y
=
+
-
cos2xcos2y
=
+
cos2xcos2y-
cos2xcos2y
=
.
故答案为:
.
| 1 |
| 2 |
=
| 1-cos2x |
| 2 |
| 1-cos2y |
| 2 |
| 1+cos2x |
| 2 |
| 1+cos2y |
| 2 |
| 1 |
| 2 |
=
| 1-cos2x-cos2y+cos2xcos2y |
| 4 |
| 1+cos2x+cos2y+cos2xcos2y |
| 4 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
点评:本题考查了三角函数的化简求值,考查了二倍角的余弦公式,是基础题.
练习册系列答案
相关题目
已知f(x)=
sin2x-cos2x,则将f(x)的图象向右平移
个单位所得曲线的一个对称中心为( )
| 3 |
| π |
| 3 |
A、(
| ||
B、(
| ||
C、(
| ||
D、(
|