题目内容
设f1(x)=
,而fn+1(x)=f1[fn(x)],n∈N*,记an=
,则数列的通项公式an= .
| 2 |
| x+1 |
| fn(2)-1 |
| fn(2)+2 |
考点:数列递推式
专题:计算题,等差数列与等比数列
分析:根据f1(x)=
,定义fn+1 (x)=f1[fn(x)],an=
,(n∈N*).可得f1(2)=
,a1=-
,fn+1(2)=f1[fn(2)]=
,从而可得an+1=-
an.可判断数列{an}是的等比数列,故可求数列{an}的通项公式.
| 2 |
| x+1 |
| fn(2)-1 |
| fn(2)+2 |
| 2 |
| 3 |
| 1 |
| 8 |
| 2 |
| fn(2)+1 |
| 1 |
| 2 |
解答:
解:(1)∵f1(2)=
,
∴a1=
=
=-
,
又fn+1(2)=f1[fn(2)]=
,
∴an+1=
=
=
=-
•
=-
an.
∴数列{an}是首项为-
,公比为-
的等比数列,
∴an=(-
)•(-
)n-1=
•(-
)n.
故答案为:
•(-
)n.
| 2 |
| 3 |
∴a1=
| f1(2)-1 |
| f1(2)+2 |
| ||
|
| 1 |
| 8 |
又fn+1(2)=f1[fn(2)]=
| 2 |
| fn(2)+1 |
∴an+1=
| fn+1(2)-1 |
| fn+1(2)+2 |
| ||
|
| 1-fn(2) |
| 4+2fn(2) |
| 1 |
| 2 |
| fn(2)-1 |
| fn(2)+2 |
| 1 |
| 2 |
∴数列{an}是首项为-
| 1 |
| 8 |
| 1 |
| 2 |
∴an=(-
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
故答案为:
| 1 |
| 4 |
| 1 |
| 2 |
点评:本题考查函数与数列的综合、数列递推式及等比数列的通项公式,考查学生的推理论证能力,属中档题.
练习册系列答案
相关题目