题目内容

18.已知函数f(x)=$\left\{\begin{array}{l}{1-|x|,(x≤1)}\\{{x}^{2}-4x+3,(x>1)}\end{array}\right.$,若f(f(m))≥0,则实数m的取值范围是(  )
A.[-2,2]B.[-2,2]∪[4,+∞)C.[-2,2+$\sqrt{2}$]D.[-2,2+$\sqrt{2}$]∪[4,+∞)

分析 令f(m)=t⇒f(t)≥0⇒$\left\{\begin{array}{l}{1-|t|≥0}\\{t≤1}\end{array}\right.$⇒-1≤t≤1;$\left\{\begin{array}{l}{{t}^{2}-4t+3≥0}\\{t>1}\end{array}\right.$⇒t≥3,再求解-1≤f(m)≤1和f(m)≥3即可.

解答 解:令f(m)=t⇒f(t)≥0⇒$\left\{\begin{array}{l}{1-|t|≥0}\\{t≤1}\end{array}\right.$⇒-1≤t≤1;
$\left\{\begin{array}{l}{{t}^{2}-4t+3≥0}\\{t>1}\end{array}\right.$⇒t≥3
下面求解-1≤f(m)≤1和f(m)≥3,
$\left\{\begin{array}{l}{-1≤1-|m|≤1}\\{m≤1}\end{array}\right.$⇒-2≤m≤1,
$\left\{\begin{array}{l}{-1≤{m}^{2}-4m+3≤1}\\{m>1}\end{array}\right.$⇒1<m≤2+$\sqrt{2}$,
$\left\{\begin{array}{l}{1-|m|≥3}\\{m≤1}\end{array}\right.$⇒m无解,
$\left\{\begin{array}{l}{{m}^{2}-4m+3≥3}\\{m>1}\end{array}\right.$⇒m≥4,
综上实数m的取值范围是[-2,2+$\sqrt{2}$]∪[4,+∞).
故选:D.

点评 本题考查了复合函数的不等式问题,换元分段求解是常规办法,也可以利用图象求解,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网