题目内容
13.设z=$\frac{3}{2}$x+y,其中x,y满足$\left\{\begin{array}{l}x+2y≥0\\ x-y≤0\\ 0≤y≤k.\end{array}$,若z的最大值为6,则z=$\frac{3}{2}$x+y的最小值为$-\frac{24}{5}$.分析 画出可行域,求出目标函数的最大值为6时,k的值,利用目标函数的几何意义求解目标函数的最小值.
解答 解:如图,$\frac{3}{2}x+y=6$过点A时取得最大值,
由$\left\{\begin{array}{l}{y=k}\\{x-y=0}\end{array}\right.$,可得(k,k),$k=\frac{12}{5}$.![]()
在点B处取得最小值,B点在直线x+2y=0上,由$\left\{\begin{array}{l}{y=\frac{12}{5}}\\{x+2y=0}\end{array}\right.$.可得:
$B(-\frac{24}{5},\frac{12}{5})$,
∴${z_{min}}=\frac{3}{2}x+y=-\frac{24}{5}$.
故答案为:$-\frac{24}{5}$.
点评 本题考查线性规划的简单应用,考查转化思想以及计算能力.
练习册系列答案
相关题目
18.已知函数f(x)=$\left\{\begin{array}{l}{1-|x|,(x≤1)}\\{{x}^{2}-4x+3,(x>1)}\end{array}\right.$,若f(f(m))≥0,则实数m的取值范围是( )
| A. | [-2,2] | B. | [-2,2]∪[4,+∞) | C. | [-2,2+$\sqrt{2}$] | D. | [-2,2+$\sqrt{2}$]∪[4,+∞) |
5.
如图所示,点A、B、C是圆O上的三点,线段OC与线段AB交于圆内一点M,若$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,(m>0,n>0),m+n=2,则∠AOB的最小值为( )
| A. | $\frac{2π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |