题目内容
6.(1)求证:DC∥平面ABE;
(2)求证:AF⊥平面BCDE.
分析 (1)要证明DC∥平面ABE,关键是要在平面ABE中找到可能与DC平行的直线,观察发现BE满足要求,根据已知证明BE∥DC,再根据线面平行的判定定理即可求解;
(2)要证明AF⊥平面BCDE,由我们要证明AF与平面BCDE中两条相交直线都垂直,由题意分析易证DC、BC均与AF垂直.
解答
证明:(1)∵DC⊥平面ABC,EB⊥平面ABC
∴DC∥EB,又∵DC?平面ABE,EB?平面ABE,
∴DC∥平面ABE.
(2)DC⊥平面ABC,AF?平面ABC,∴DC⊥AF,
又∵AB=AC,F为BC的中点,
∴AF⊥BC,
∵BC∩DC=C,
∴AF⊥平面BCDE.
点评 本题考查直线和平面垂直、平行的判定,证明时,其一般规律是“由已知想性质,由求证想判定”,也就是说,根据已知条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来.
练习册系列答案
相关题目
14.利用“长方体ABCD-A1B1C1D1中,四面体A1BC1D”的特点,求得四面体PMNR(其中PM=NR=$\sqrt{10}$,PN=MR=$\sqrt{13}$,MN=PR=$\sqrt{5}$)的外接球的表面积为( )
| A. | 14π | B. | 16π | C. | 13π | D. | 15π |
15.设函数$f(x)=sin(2x-\frac{π}{2}),x∈R$,则f(x)是( )
| A. | 最小正周期为π的奇函数 | B. | 最小正周期为$\frac{π}{2}$的偶函数 | ||
| C. | 最小正周期为$\frac{π}{2}$的奇函数 | D. | 最小正周期为π的偶函数 |