题目内容
1.已知直线L被两平行直线L1:2x-5y+9=0与L2:2x-5y-7=0所截线段AB的中点恰在直线x-4y-1=0上,圆C:(x+4)2+(y-1)2=25.(1)证明直线L与圆C恒有两个交点;
(2)当直线L被圆C截得的弦最短时,求出直线方程和最小弦长.
分析 (1)设线段AB的中点为M(a,b),由此列出方程组求出a、b的值;根据圆C的圆心C与点M的距离与半径r的大小即可证明直线L与圆C恒有两个交点;
(2)由直线L被圆C截得的弦最短时直线L⊥MC,求出L的斜率,写出直线方程,再求出最小弦长.
解答 解:(1)证明:设线段AB的中点为M(a,b),
依题意$\left\{\begin{array}{l}a-4b-1=0\\ \frac{|2a-5b+9|}{{\sqrt{29}}}=\frac{|2a-5b-7|}{{\sqrt{29}}}\end{array}\right.$,…(2分)
解得a=-3,b=-1;…(3分)
∵圆C:(x+4)2+(y-1)2=25圆心为C(-4,1),半径r=5;…(4分)
且|MC|=$\sqrt{{[-4-(-3)]}^{2}{+[1-(-1)]}^{2}}$=$\sqrt{5}$<r,
∴直线L与圆C恒有两个交点; …(6分)
(2)∵当直线L被圆C截得的弦最短时直线L⊥MC,…(8分)
∴kL=-$\frac{1}{{k}_{MC}}$=-$\frac{-4-(-3)}{1-(-1)}$=$\frac{1}{2}$,
则直线L为$y+1=\frac{1}{2}(x+3)$,
即x-2y+1=0,…(10分)
最小弦长为|EF|=$2\sqrt{{r^2}-|MC{|^2}}=4\sqrt{5}$.…(12分)
点评 本题考查了直线与圆的位置关系的应用问题,也考查了直线垂直以及两点间的距离公式的应用问题,是综合性题目.
练习册系列答案
相关题目
9.“x2-4x<0”的一个充分不必要条件为( )
| A. | 0<x<4 | B. | 0<x<2 | C. | x>0 | D. | x<4 |
13.已知椭圆的焦点F1(0,-1),F2(0,1),P为椭圆上一动点,且|F1F2|是|PF1|与|PF2|的等差中项,则椭圆的标准方程为( )
| A. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1 | C. | x2+$\frac{{y}^{2}}{3}$=1 | D. | $\frac{{x}^{2}}{3}$+y2=1 |
10.已知复数$z=\frac{1}{1+i}+i$,则z在复平面内对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |