题目内容
15.设函数y=ax2与函数y=|$\frac{lnx+1}{ax}$|的图象恰有3个不同的交点,则实数a的取值范围为( )| A. | ($\frac{\sqrt{3}}{3}$e,$\sqrt{e}$) | B. | (-$\frac{\sqrt{3}}{3}$e,0)∪(0,$\frac{\sqrt{3}}{3}$e) | C. | (0,$\frac{\sqrt{3}}{3}$e) | D. | ($\frac{1}{\sqrt{e}}$,1)∪{$\frac{\sqrt{3}}{3}$e} |
分析 令ax2=|$\frac{lnx+1}{ax}$|得a2x3=|lnx+1|,作出y=a2x3和y=|lnx+1|的函数图象,利用导数知识求出两函数图象相切时对应的a0,则0<a<a0.
解答
解:令ax2=|$\frac{lnx+1}{ax}$|得a2x3=|lnx+1|,显然a>0,x>0.
作出y=a2x3和y=|lnx+1|的函数图象,如图所示:
设a=a0时,y=a2x3和y=|lnx+1|的函数图象相切,切点为(x0,y0),
则$\left\{\begin{array}{l}{3{{a}_{0}}^{2}{{x}_{0}}^{2}=\frac{1}{{x}_{0}}}\\{{{a}_{0}}^{2}{{x}_{0}}^{3}=ln{x}_{0}+1}\end{array}\right.$,解得x0=e${\;}^{\frac{2}{3}}$,y0=$\frac{1}{3}$,a0=$\frac{\sqrt{3}e}{3}$.
∴当0<a<$\frac{\sqrt{3}e}{3}$时,y=a2x3和y=|lnx+1|的函数图象有三个交点.
故选:C.
点评 本题考查了函数图象的交点个数判断,借助函数图象求出临界值是关键.
练习册系列答案
相关题目
6.已知集合A={x|2x-1<1},B=(-2,2],则A∩B=( )
| A. | (-2,0) | B. | (-2,2] | C. | (1,2] | D. | (-2,1) |
3.若实数x,y满足不等式组$\left\{\begin{array}{l}{2x-3y+6≥0}\\{4x-y-8≤0}\\{x+y-2≥0}\end{array}\right.$,则z=x-y的最大值为( )
| A. | -2 | B. | -1 | C. | 0 | D. | 2 |
10.已知等差数列{an}的前n项和为Sn,且S10=5,a7=1,则a1=( )
| A. | -$\frac{1}{2}$ | B. | -1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
20.已知$\sqrt{3}$sin(π-x)+cos(-x)=$\frac{8}{5}$,则cos(x-$\frac{π}{3}$)=( )
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{6}{5}$ | D. | $\frac{7}{5}$ |
7.已知集合A={x|(x-4)(x+2)<0},B={-3,-1,1,3,5},则A∩B=( )
| A. | {-1,1,3} | B. | {-3,-1,1,3} | C. | {-1,1,3,5} | D. | {-3,5} |
4.若z为复数且z(2-i)=3+i,i为虚数单位,则|z|=( )
| A. | 2 | B. | $\sqrt{2}$ | C. | $\frac{74}{25}$ | D. | $\frac{\sqrt{74}}{5}$ |