题目内容

15.设函数y=ax2与函数y=|$\frac{lnx+1}{ax}$|的图象恰有3个不同的交点,则实数a的取值范围为(  )
A.($\frac{\sqrt{3}}{3}$e,$\sqrt{e}$)B.(-$\frac{\sqrt{3}}{3}$e,0)∪(0,$\frac{\sqrt{3}}{3}$e)C.(0,$\frac{\sqrt{3}}{3}$e)D.($\frac{1}{\sqrt{e}}$,1)∪{$\frac{\sqrt{3}}{3}$e}

分析 令ax2=|$\frac{lnx+1}{ax}$|得a2x3=|lnx+1|,作出y=a2x3和y=|lnx+1|的函数图象,利用导数知识求出两函数图象相切时对应的a0,则0<a<a0

解答 解:令ax2=|$\frac{lnx+1}{ax}$|得a2x3=|lnx+1|,显然a>0,x>0.
作出y=a2x3和y=|lnx+1|的函数图象,如图所示:
设a=a0时,y=a2x3和y=|lnx+1|的函数图象相切,切点为(x0,y0),
则$\left\{\begin{array}{l}{3{{a}_{0}}^{2}{{x}_{0}}^{2}=\frac{1}{{x}_{0}}}\\{{{a}_{0}}^{2}{{x}_{0}}^{3}=ln{x}_{0}+1}\end{array}\right.$,解得x0=e${\;}^{\frac{2}{3}}$,y0=$\frac{1}{3}$,a0=$\frac{\sqrt{3}e}{3}$.
∴当0<a<$\frac{\sqrt{3}e}{3}$时,y=a2x3和y=|lnx+1|的函数图象有三个交点.
故选:C.

点评 本题考查了函数图象的交点个数判断,借助函数图象求出临界值是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网