题目内容

2.角A是△ABC的一个内角,且$sin({A+\frac{π}{4}})=\frac{3}{5}$,则$tan({A+\frac{π}{4}})$=$-\frac{3}{4}$.

分析 由已知条件求得A+$\frac{π}{4}$为钝角,再由平方关系求得cos(A+$\frac{π}{4}$),则答案可求.

解答 解:∵角A是△ABC的一个内角,
∴0<A<π,则A+$\frac{π}{4}$∈($\frac{π}{4},\frac{5π}{4}$),
又$sin({A+\frac{π}{4}})=\frac{3}{5}$$<\frac{\sqrt{2}}{2}$,
∴A+$\frac{π}{4}$∈($\frac{π}{2},π$),
则cos(A+$\frac{π}{4}$)=$-\sqrt{1-si{n}^{2}(A+\frac{π}{4})}=-\frac{4}{5}$.
∴$tan({A+\frac{π}{4}})$=$\frac{sin(A+\frac{π}{4})}{cos(A+\frac{π}{4})}$=$-\frac{3}{4}$.
故答案为:$-\frac{3}{4}$.

点评 本题考查三角函数的化简求值,关键是由已知求得A+$\frac{π}{4}$的范围,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网