题目内容
17.已知$sinα+cosα=\frac{1}{5},0<α<π$,(1)求tanα;
(2)求sin2α+sinαcosα的值.
分析 把已知等式两边平方,可得α∈($\frac{π}{2},π$),求出sinα-cosα的值,与原式联立求得sinα、cosα的值.
(1)直接由商的关系求得tanα;
(2)把分母中的“1”用平方关系代替,化弦为切求解.
解答 解:由$sinα+cosα=\frac{1}{5}$,得$si{n}^{2}α+co{s}^{2}α+2sinαcosα=\frac{1}{25}$,
∴2sinαcosα=$-\frac{24}{25}$.
∵0<α<π,∴α∈($\frac{π}{2},π$),
则sinα>0,cosα<0.
则sinα-cosα=$\sqrt{(sinα-cosα)^{2}}=\sqrt{1-2sinαcosα}$=$\sqrt{1+\frac{24}{25}}=\frac{7}{5}$.
联立$\left\{\begin{array}{l}{sinα+cosα=\frac{1}{5}}\\{sinα-cosα=\frac{7}{5}}\end{array}\right.$,解得$\left\{\begin{array}{l}{sinα=\frac{4}{5}}\\{cosα=-\frac{3}{5}}\end{array}\right.$.
(1)tan$α=\frac{sinα}{cosα}$=$\frac{\frac{4}{5}}{-\frac{3}{5}}=-\frac{4}{3}$;
(2)sin2α+sinαcosα=$\frac{si{n}^{2}α+sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{ta{n}^{2}α+tanα}{ta{n}^{2}α+1}$=$\frac{(-\frac{4}{3})^{2}-\frac{4}{3}}{(-\frac{4}{3})^{2}+1}$=$\frac{4}{25}$.
点评 本题考查三角函数的化简求值,把已知等式两边平方,判断α的范围是关键,属中档题.
| A. | 1342 | B. | 1343 | C. | 1344 | D. | 1345 |
| A. | 16 | B. | 12 | C. | 20 | D. | -32 |
| A. | $(\frac{{3-2\sqrt{3}}}{2},0]$ | B. | $(\frac{{3-2\sqrt{3}}}{2},3]$ | C. | $(\frac{{3-2\sqrt{3}}}{2},\frac{{3+2\sqrt{3}}}{2}]$ | D. | $(\frac{{3-2\sqrt{3}}}{2},\frac{{3+2\sqrt{3}}}{2}]$ |
| A. | ①④ | B. | ②③ | C. | ①③ | D. | ②④ |