题目内容
12.已知复数$z=\frac{1+3i}{1-i}$,则共轭复数$\overline z$所对应的点位于( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 利用复数的运算法则、几何意义即可得出.
解答 解:复数$z=\frac{1+3i}{1-i}$=$\frac{(1+3i)(1+i)}{(1-i)(1+i)}$=$\frac{-2+4i}{2}$=-1+2i,
则共轭复数$\overline z$=-1-2i所对应的点(-1,-2)位于第三象限.
故选:C.
点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
20.若P(2,-1)为圆x2+y2-2x-24=0的弦AB的中点,则直线AB的方程是( )
| A. | x-y-3=0 | B. | 2x+y-3=0 | C. | x+y-1=0 | D. | 2x-y-5=0 |