题目内容
已知数列{an}满足前n项和Sn=2n+1-2.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=(2n+1)•an,求数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=(2n+1)•an,求数列{bn}的前n项和Tn.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)根据an与Sn的关系,即可求数列{an}的通项公式;
(2)求出bn=(2n+1)•an的通项公式,利用错位相减法,即可求数列{bn}的前n项和Tn.
(2)求出bn=(2n+1)•an的通项公式,利用错位相减法,即可求数列{bn}的前n项和Tn.
解答:
解:(1)当n≥2时,an=Sn-Sn-1=2n+1-2-(2n-2)=2n+1-2n=2n,
当n=1时,a1=S1=21+1-2=4-2=2,满足an=2n,
∴an=2n,
即数列{an}为等比数列,
∴an=2n.
(2)∵bn=(2n+1)•an,
∴bn=(2n+1)•2n,
则数列{bn}的前n项和Tn=3×2+5×22+7×23+…+(2n+1)•2n,
2Tn=3×22+5×23+7×24+…+(2n-1)•2n+(2n+1)•2n+1,
两式相减得-Tn=6+2×22+2×23+2×24+…+2•2n-(2n+1)•2n+1=6+2×
-(2n+1)•2n+1=-2-(2n-1)2n+1,
即Tn=2+(2n-1)2n+1
当n=1时,a1=S1=21+1-2=4-2=2,满足an=2n,
∴an=2n,
即数列{an}为等比数列,
∴an=2n.
(2)∵bn=(2n+1)•an,
∴bn=(2n+1)•2n,
则数列{bn}的前n项和Tn=3×2+5×22+7×23+…+(2n+1)•2n,
2Tn=3×22+5×23+7×24+…+(2n-1)•2n+(2n+1)•2n+1,
两式相减得-Tn=6+2×22+2×23+2×24+…+2•2n-(2n+1)•2n+1=6+2×
| 4(1-2n-1) |
| 1-2 |
即Tn=2+(2n-1)2n+1
点评:本题主要考查数列通项公式的求解和数列求和,要求熟练掌握错位相减法.考查学生的计算能力.
练习册系列答案
相关题目