题目内容

10.已知0<c<1,a>b>1,下列不等式成立的是(  )
A.ca>cbB.ac<bcC.$\frac{a}{a-c}>\frac{b}{b-c}$D.logac>logbc

分析 根据题意,依次分析选项:对于A、构造函数y=cx,由指数函数的性质分析可得A错误,对于B、构造函数y=xc,由幂函数的性质分析可得B错误,对于C、由作差法比较可得C错误,对于D、由作差法利用对数函数的运算性质分析可得D正确,即可得答案.

解答 解:根据题意,依次分析选项:
对于A、构造函数y=cx,由于0<c<1,则函数y=cx是减函数,又由a>b>1,则有ca>cb,故A错误;
对于B、构造函数y=xc,由于0<c<1,则函数y=xc是增函数,又由a>b>1,则有ac>bc,故B错误;
对于C、$\frac{a}{a-c}$-$\frac{b}{b-c}$=$\frac{ab-ac-ab+bc}{(a-c)(b-c)}$=$\frac{c(b-a)}{(a-c)(b-c)}$,又由0<c<1,a>b>1,则(a-c)>0、(b-c)>0、(b-a)<0,进而有$\frac{a}{a-c}$-$\frac{b}{b-c}$<0,故有$\frac{a}{a-c}$<$\frac{b}{b-c}$,故C错误;
对于D、logac-logbc=$\frac{lgc}{lga}$-$\frac{lgc}{lgb}$=lgc($\frac{lgb-lga}{lga•lgb}$),又由0<c<1,a>b>1,则有lgc<0,lga>lgb>0,则有logac-logbc=$\frac{lgc}{lga}$-$\frac{lgc}{lgb}$=lgc($\frac{lgb-lga}{lga•lgb}$)>0,即有logac>logbc,故D正确;
故选:D.

点评 本题考查不等式比较大小,关键是掌握不等式的性质并灵活运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网