题目内容

2.公元263年左右,我国数学家刘徽发现,当圆内接正多边形的边数无限增加时,正多边形的周长可无限逼近圆的周长,并创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率,利用刘徽的割圆术设计的程序框图如图所示,若输出的n=96,则判断框内可以填入(  )(参考数据:sin7.5°≈0.1305,sin3.75°≈0.06540,sin1.875°≈0.03272)
A.p≤3.14B.p≥3.14C.p≥3.1415D.p≥3.1415926

分析 列出循环过程中S与n的数值,满足判断框的条件即可结束循环.

解答 解:模拟执行程序,可得:
n=48,p=48sin($\frac{180}{48}$)°≈3.13,
n=96,S=96×sin($\frac{180}{96}$)°≈3.14,
满足条件p≥3.14,退出循环,输出n的值为96.
故选:B.

点评 本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网